
Bitkub Chain (BKC)
Technical Paper
(V 2.1)
Updated 22 November 2022

Bitkub Chain (BKC) - Technical Paper
Copyright © 2022 Bitkub Blockchain Technology Co., Ltd All Rights Reserved

Table of contents

Table of contents 1

1. Introduction 1

2. Blockchain paradigm 3
2.1) Native currency units 4
2.2) Bitkub Chain history 4

3. States & Tries 6
3.1) Merkle Patricia Trie 6

3.1.1) Extension node 6
3.1.2) Branch node 6
3.1.3) Leaf node 6

3.2) States 7
3.2.1) State Root 7
3.2.2) World State 7
3.2.3) Transaction State 9

a) Transaction state components 9
b) Transaction Trie 9

3.2.4) Transaction Receipt 9
a) Transaction Receipt Trie 9

4. GAS 10
4.1) Gas Limit and Gas Price 10
4.2 Mechanism of gas calculation 10

4.2.1) Native coin transaction 11
4.2.2) Smart contract creation and interaction 11

5. Execution Engine (EVM) 12
5.1) EVM Instructions Set 14
5.2) Execution Cycle 14

6. Validation & Finalization 15
6.1) Finalization 16
6.2) Validation 16

6.2.1) Block header validation 16
6.2.2) Block body validation 16
6.2.3) State validation 17

7. Consensus 18
7.1) Consensus definition 18
7.2) Consensus Mechanism 18

Bitkub Chain (BKC) - Technical Paper
Copyright © 2022 Bitkub Blockchain Technology Co., Ltd All Rights Reserved

7.2.1) Proof-of-Stake-Authority (PoSA) 18
Staking mechanism 19
Authority mechanism 21

7.2.2) Difference between Clique PoA and Erawan PoSA 21
Block reward distribution 21
Block header contents 21
Block header validation 21

8. Mining and Reward distribution 23
8.1) Mining mechanism 23
8.2) Block reward distribution mechanism 24

9. Block period 25
9.1) Performance comparison 26

10. Architecture 29
10.1) Blockchain layer 29

10.1.1) Network layer 29
10.1.2) Blockchain core 29
10.1.3) Tools & library 30
10.1.4) Application 30

10.2) Network Architecture 30
10.2.1) Validator node pool 30
10.2.2) Boot node pool 31
10.2.3) Remote procedure call (RPC) Node 31
10.2.4) Archive Node 31

11. The advantages of Bitkub Chain 31
11.1) Blockchain Layer 31

11.1.1) Block size 31
11.1.2) Block time 32
11.1.3) Transaction fees 32
11.1.4) Infrastructure design 33

11.2) Application Layer 35
11.2.1) Registration 35

Registration levels 35
Register procedure 35

11.2.2) KAP token standard 36
11.2.3) KKUB 37
11.2.4) HyperBlock 38

Backend Service 38
Gas Tank 39

Bitkub Chain (BKC) - Technical Paper
Copyright © 2022 Bitkub Blockchain Technology Co., Ltd All Rights Reserved

Smart Contract 39
Fail-Safe mechanism 39

12. Future Technical Goals 41
12.1) Scalability 41

12.1.1) Layer1 Scaling 41
a) Increasing block size 41
b) Sharding 41

12.1.2) Layer2 Scaling 43
a) Rollups 43
b) Plasma 43
c) Validium 44

12.2) Consensus Improvement 44
11.2.1) Proof-of-Stake + 3 44

12.3) Bitkub Chain SDK (SDK) 45

13. Conclusion 47

References 47

Bitkub Chain (BKC) - Technical Paper
Copyright © 2022 Bitkub Blockchain Technology Co., Ltd All Rights Reserved

1. Introduction

Blockchain technology, which runs Bitcoin, has developed over the last decade
into one of today's biggest ground-breaking technologies with the potential to impact
every industry from financial to healthcare, to manufacturing, to educational institutions.
However, Bitcoin (the first cryptocurrency) has only used blockchain as the
infrastructure and created digital money with the ability to transfer value. Whereas
Ethereum made a new paradigm shift in blockchain technology with programmable
capability for digital money, global payments, and applications.

In the Blockchain Trilemma, Bitcoin and Ethereum still use the Proof-of-Work (PoW)
consensus type, which helps increase transparency and security. However, it generates
environmental impact and the high cost of mining nodes that cause power consumption,
leading to an implementation challenge, high transaction fees, and causing transaction
delays. As a result, it creates a low rate of blockchain adoption and adds a barrier to
people who aim to use blockchain technology.

To reconfigure and provide a better consensus solution, "Bitkub Chain" (BKC)
introduced a technology platform and system that help bridge the gap, lower impact on
the environment, faster processing of transactions with lower fees, helps to save the
mining cost, and solve cybersecurity issues.

"Bitkub Chain'' started developing and reapplying the Ethereum blockchain [3] and
forked from the Go-Ethereum [21] concept but changed the consensus from
Proof-of-Work (PoW) based on Ethash [26] to Proof-of-Authority (PoA) based on Clique
[10]. In the initial stage, Bitkub Chain uses the PoA consensus [9] to add the advantage
of lower mining or running node cost and faster speed of verifying transactions.
However, giving greater weight to scalability and increasing network performance from
PoA might lower the decentralization level.

Therefore, to offer a better technology platform and system for blockchain adoption. Our
team is developing a new consensus called Proof-of-Stake-Authority (PoSA) to increase
the network's decentralization, corresponding and addressing a solution to all concerns
from PoA, significantly improving network performance and providing truthful data with
less environmental impact to democratize opportunity to use blockchain technology.

To summarize, the Bitkub Chain enhances the opportunity for everyone to participate in
the decentralized economy without barriers to entry such as low transaction speed, high
transaction fees, etc. Bitkub Chain was designed to be a public network providing a

Bitkub Chain (BKC) - Technical Paper
Copyright © 2022 Bitkub Blockchain Technology Co., Ltd All Rights Reserved

1

good user experience. Both blockchain and the application layer can increase the
network's speed and scalability. It consists of increasing the block size, reducing the
block time to maximize speed, and providing a fixed rate of gas price to stabilize the
transaction fees. Moreover, Bitkub Chain has a specific infrastructure design for the
validator set by connecting the validator node directly through the unlimited bandwidth
network, which can help improve the synchronization and stability. In addition, on the
application layer, we have a KAP which is a standard to implement the token and
Wrapped KUB (KKUB), the KAP-20 version of KUB, which will be an important part of
driving the De-Fi and DApp on the Bitkub Chain, and the HyperBlock system that
combined off-chain and on-chain solutions together to improve the transaction
scalability. Finally, all solutions provide the best experience for users, developers, and
everyone to engage with the decentralized world seamlessly and efficiently through
Bitkub Chain.

Bitkub Chain (BKC) - Technical Paper
Copyright © 2022 Bitkub Blockchain Technology Co., Ltd All Rights Reserved

2

2. Blockchain paradigm

Bitkub Chain, a forked Ethereum base blockchain [3], can be interpreted as a
transaction-based state machine. It starts from the first state, called the genesis state,
and executes the transactions to produce some current state. The visualization can be
shown in Figure-01.

t t+1 σ σ

Figure-01

t , t+1 is described as the previous state and current state, which is changed by theσ σ
transaction (T) via the state transition function (). According to the state machineΥ
concept, the general equation of state transformation can be written as follows
(equation-1).

(1)[1] t+1 (t ,T)σ ≡ Υ σ

Transactions are packed into blocks and linked together to form a chain structure using
a cryptographic hash. Using hash makes each block unique and unable to spoof.
According to equation-2, a block (a series of transactions) can be applied to the
equation. So, the equation is rewritten in terms of block-level as follows.

(2)[1] t+1 (t ,B)σ ≡ Π σ
(3)[1] B (...(T₀,T₁,...),...) ≡
(4)[1] (,B) (B, ((,T₀),T₁)...)Π σ ≡ Ω Υ Υ σ

From equation-3, a block(B) is a series of transactions and their components. After
integrating with state-transition function () and block-finalization function (), aΥ Ω
block-level state-transition function () is created. To summarize equation-2, 3, and 4, aΠ
new equation is formed as equation-5

(5) t+1 (B, ((t,T₀),T₁)...)σ ≡ Ω Υ Υ σ

Bitkub Chain (BKC) - Technical Paper
Copyright © 2022 Bitkub Blockchain Technology Co., Ltd All Rights Reserved

3

2.1) Native currency units
Bitkub Chain has a native currency called KUB which is used to pay for
transaction fees in order to reward node validators. The largest unit is KUB.

One KUB is defined as being . On the other hand, the smallest unit is called1018

Bit. All sub denominations of KUB are listed in Table-01.

Table-01

2.2) Bitkub Chain history
Bitkub Chain is a decentralized network; all validator nodes have the right to
create a new block at every turn. However, in some cases, there is a possibility of
producing a temporary forked block (chain is split) which occurs from coexisting
with the states created by a different validator node. This situation can be shown
in Figure-02.

Figure-02 (source https://medium.com/@vrastromind)

The first chain created would be the main chain while the rest will be the uncle
block as stated by the Ethereum GHOST protocol created by (Sompolinsky and
Zohar ,2013). The uncle block will be discarded, but the canonical chain (the
longest chain) as shown in Figure-03.

Bitkub Chain (BKC) - Technical Paper
Copyright © 2022 Bitkub Blockchain Technology Co., Ltd All Rights Reserved

4

Figure-03 (source https://medium.com/@vrastromind)

Therefore, a new protocol must be implemented to upgrade the protocol
occasionally. After implementation, it will modify an existing protocol and create a
new one split from the original version, called "Hard Fork". As a result, the
previous software using the old protocol version will be obsolete and have to be
replaced with the latest software. Bitkub Chain has moved from Proof of
Authority(PoA) to Proof of Stake Authority(PoSA) in the Erawan Hard Fork [28].

Bitkub Chain (BKC) - Technical Paper
Copyright © 2022 Bitkub Blockchain Technology Co., Ltd All Rights Reserved

5

3. States & Tries

Like Ethereum, The trie is a core database in Bitkub Chain storing all significant
states such as account, receipt, and transaction state.

3.1) Merkle Patricia Trie
The Merkle Patricia Trie [8] introduced by Ethereum [7] is a cryptographically
authenticated data structure used to store key and value binding. It is a
combination of the Merkle Tree and Patricia Tree (a binary radix tree) to improve
the efficiency of the data's insertion, deletion, and selection. In addition, Merkle
Patricia Trie is the primary data structure of Bitkub Chain (the same as
Ethereum). There are three types of nodes: extension node, branch node, and
leaf node [6].

3.1.1) Extension node
includes two items 1. encodedPath is a partial path encoded by RLP
encoding function, and 2. its key is the next trie node to lookup.

3.1.2) Branch node
branch nodes are the path between one node to another node. For
example, the node contains 17 array items. One will hold the possible
value (hex character - nibble) in the path, and another one will hold the
final target value after the path has been fully traversed.

3.1.3) Leaf node
is used to store the data, including two items inside a node encoded path
and value. The encodedPath is the end path encoded by the RLP
encoding function, and the value is the target value of the specific path.

Bitkub Chain (BKC) - Technical Paper
Copyright © 2022 Bitkub Blockchain Technology Co., Ltd All Rights Reserved

6

3.2) States

Figure-04: An overview of the tries [6]

3.2.1) State Root
Bitkub Chain stores the root of all the states in the block header. Every trie
has a root, and each root is a 256-bit hash of the root node of each tree
encoded into the trie as a mapping from the Keccak 256-bit hash of the
256-bit integer keys to the RLP-encoded 256-bit integer values.

(6) RootHash = KEC(RLP.encode(Trie))

Where KEC is a Keccak 256-bit hashing function, RLP.encode is an RLP
encoding function, and the Trie is mapping the key-value set.

3.2.2) World State
The world state is one of the states that maps between addresses and
account states. It is expressed that the world state and global state
could be seen as one after it is constantly updated from transaction
executions. Therefore, the balance of an account or the current state of a
smart contract could be query from the world state.

a) World State Trie All the information about Bitkub Chain
accounts is stored in the world state trie. The root node of the trie

Bitkub Chain (BKC) - Technical Paper
Copyright © 2022 Bitkub Blockchain Technology Co., Ltd All Rights Reserved

7

will be cryptographically hashed by using the Keccak-256 hashing
function and included in the stateRoot field of the block header to
represent the current state [14].

Figure-05: World State Trie [6]

b) Account State
i) Account state components

● Nonce is the number of transactions sent by an
account.

● Balance is KUB balance of an account.
● StorageRoot consists of a 256-bit hash of the root

node of the account storage trie.
● codeHash is the hash of the EVM code of an

account.

ii) Account Storage Trie
The account storage trie is used to store the states of the
contract accounts, as for External-Own Accounts (EOAs) the
storageRoot will be empty. All smart contract data is
persisted in the account storage trie as a mapping between
32-bytes integers.

3.2.3) Transaction State
a) Transaction state components

i) Nonce is the number of transactions sent by the account.

Bitkub Chain (BKC) - Technical Paper
Copyright © 2022 Bitkub Blockchain Technology Co., Ltd All Rights Reserved

8

ii) gasPrice is the number of Bit that will be paid per unit of
gas.
iii) gasLimit is the maximum amount of gas allowed to use
for executing the transaction.
iv) To is the recipient address for a normal transaction, for a
contract creation transaction will be zero address.
v) Value is the number of Bit that transferred to the recipient.
vi) R, S, V are the values used in the cryptographic
signature to determine the sender's validity of the
transaction.
vii) AccessList is a list of addresses and storage keys.
viii) Chain ID is the specific ID of the chain.
ix) Data is an input data in byte array of the message call
(for transferring the value and sending a message call to a
smart contract).
x) Init is the EVM-code utilized for initialization of the smart
contract. (for contract creation only).

b) Transaction Trie
stores all of the transactions included in a block. The block header
(in the transactionsRoot field) will include the hash of the root node
of the transaction trie.

3.2.4) Transaction Receipt
a) Transaction Receipt Trie
stores all transaction receipts in the same block practice as
Transaction Trie. The hash of the root node of the transaction
receipts trie is also included in the receiptsRoot field of the block
header.

Bitkub Chain (BKC) - Technical Paper
Copyright © 2022 Bitkub Blockchain Technology Co., Ltd All Rights Reserved

9

4. GAS

All transactions sent on Bitkub Chain are subjected to fees called Gas to help
prevent users from abusing their transactions and support the validator node’s
maintenance cost. The prices of gas units in each transaction varies based on the
computational instructions of the Ethereum virtual machine (EVM), data length, memory
usage, etc. (see Appendix A). The amount of gas collected is transferred to the in-turn
validator node wallet.

4.1) Gas Limit and Gas Price
As stated above, every transaction spending gas has a limitation of gas usage
known as gasLimit. The prices of gas units are implicitly purchased from the
sender’s account balance. The purchase happens at the gasPrice (Wood, 2022).
The gasPrice pegs to 5 Gbit to promote the circulation of KUB Coin (Bitkub
Chain‘s Native coin) on Bitkub Chain network and the company’s gas tank. In
addition, the remaining gas after the transaction had been executed would be
refunded to the sender's address at the same gasPrice that why it was called
gasLimit, and can express by the following equation:

(7) gᵣ = TgasL - Gused

Where gᵣ is the amount of gas refund sent back to the sender’s address. TgasL,
Gused means gasLimit set by the sender and actual gas used.

4.2 Mechanism of gas calculation
Bitkub Chain, forked Ethereum, uses the same method of gas calculation as
Ethereum main network. The gas will be charged based on the gasLimit that the
sender input and the remaining gas will be refunded after finalizing the process.
Before any EVM code gets executed, some amount of gas was deducted from
the sender's defined gasLimit. This amount is named intrinsic gas, g₀, and can
be described from equation (8).

(8)[1]

Bitkub Chain (BKC) - Technical Paper
Copyright © 2022 Bitkub Blockchain Technology Co., Ltd All Rights Reserved

10

Ti, Td stands for the series of bytes. Gtxcreate gets value when a transaction is
invoked in the contract creation process. In other words, if a contract creation
transaction does not exist, Gtxcreate will be zero in value. Gtransaction is the initial fee
that all transactions on the Bitkub Chain network have to pay. Gaccesslistdaardss and
Gaccessliststorage are the cost of warm-up address and storage access. After intrinsic
gas has been charged, the transaction will be executed. There are two types of
interaction with Bitkub Chain.

4.2.1) Native coin transaction
This type of transaction is simple and does not invoke any smart contract
or smart contract creation. Sending a KUB coin to a regular wallet address
(not a smart contract address) is the only one for this type. According to
equation (8), It does not have Gtxcreate, Gaccesslistdaardss, Gtxdatanonzero, and
Gtxdatanonzero. Moreover, it does not interact with EVM (Only g₀ occurs to
calculate the gas fee). To summarize, Gused can be re-written as follows.

4.2.2) Smart contract creation and interaction
After intrinsic gas has been charged, EVM code will be executed, and gas
is consumed by EVM instruction (also called OPCODE). Each instruction
has a specific amount of gas consumption that can be clearly explained by
equation C() (Appendix B). As a result, the actual gas usedσ, µ, 𝐴, 𝐼
(Gused) is determined by equation (9).

(9) Gused = g₀ + C()σ, µ, 𝐴, 𝐼

This equation describes the actual gas consumed by the whole blockchain
network. However, the gas calculation equation (9) is only writing action
on smart contracts and a contraction creation transaction, but reading
action from only wallet address does not pay the gas for calling the smart
contract.

Bitkub Chain (BKC) - Technical Paper
Copyright © 2022 Bitkub Blockchain Technology Co., Ltd All Rights Reserved

11

5. Execution Engine (EVM)

Bitkub Chain execution engine relies on Ethereum Virtual Machine (EVM). For
processing the transaction and managing the state transition, the Ethereum Virtual
Machine is a stack-based machine that executes the bytecode and performs the
operation based on a set of instructions to transform the state from the previous state to
the new state [18]. The EVM is a Turing-complete machine, the total number of
computations limited by the amount of gas to prevent such an attack, e.g.,
denial-of-service (DDoS) attacks. The EVM also supports exception handling to avoid
the invalid state transition.

The main components of EVM include:
● World state (σ) is a non-volatile state that stores a significant state, such as the

account state.
● Machine state (μ) is a volatile state used during the execution, such as gas

available g, the program counter pc, the memory content m, and the stack
content s.

● Stack is a last-in-first-out (LIFO) storage with two abstract operations: PUSH and
POP.

● Memory is a word-addressed byte array used to store all instructions. The
memory is volatile because its state will be reset after the computation ends.

● Gas (g) is the remaining gas of the current execution.
● Program Counter (pc) is always set to zero at the beginning of execution and

increased with instructions being read from memory.
● Virtual ROM is an immutable memory where the EVM bytecode or the program

code is stored and accessible only through a particular instruction, e.g.,
CODECOPY instruction.

● Storage is persistent storage, a key-value store. The storage is non-volatile
because the blockchain's system state is permanently persisted.

Bitkub Chain (BKC) - Technical Paper
Copyright © 2022 Bitkub Blockchain Technology Co., Ltd All Rights Reserved

12

EVM architecture

Figure-06: EVM architecture [18]

Bitkub Chain (BKC) - Technical Paper
Copyright © 2022 Bitkub Blockchain Technology Co., Ltd All Rights Reserved

13

5.1) EVM Instructions Set
The smart contract code is written in a low-level, stack-based bytecode language
called “EVM bytecode”. The bytecode consists of a series of bytes, where each
byte represents an operation [13]. There are many types of operations:

5.1.1) Arithmetic operations, opcodes for arithmetic execution, e.g.,
ADD, MUL, SUB, DIV, MOD, SHA3, etc.

5.1.2) Stack operations, opcodes for stack, memory, and storage
management instructions, e.g., POP, PUSH, MLOAD, MSTORE, SLOAD,
STORE, etc.

5.1.3) Process flow operations, opcodes for control the execution flow,
e.g., STOP, JUMP, PC, JUMPDEST.

5.1.4) System operations, opcodes for the system executing the
program, e.g., CREATE, CALL, RETURN, REVERT, DELEGATECALL,
STATICCALL, etc.

5.1.5) Logic operations, opcodes for comparisons, and bitwise logic,
e.g., LT, GT, XOR, OR, EQ, ISZERO, etc.

5.1.6) Environmental operations, opcodes for dealing with the execution
environment information, e.g., GAS, ADDRESS, BALANCE, ORIGIN,
EXTCODECOPY and etc.

5.1.7) Block operations, opcodes for accessing the information on the
current block, e.g., BLOCKHASH, COINBASE, TIMESTAMP,
DIFFICULTY, etc.

For more information about an EVM instructions cost [1]

5.2) Execution Cycle
Several essential information is required in the execution model inside the
execution environment, including the system state σ, the remaining gas g,
substate A (Appendix C), and tuple I (Appendix D). The primary function in the
EVM is a state-progression function (O) which performs an iterator loop
recursively to compute the resultant state σ’, the remaining gas g’, substate A’,
and the consequent output I

Bitkub Chain (BKC) - Technical Paper
Copyright © 2022 Bitkub Blockchain Technology Co., Ltd All Rights Reserved

14

(10)[1]

In the normal situation of the execution, the state-progression function (O) should
be performed until reaching the normal halting and return the output result of
execution.

(11)[1]

The normal halting might be triggered by some opcodes such as RETURN,
REVERT, STOP, SELFDESTRUCT. The other will be an empty set (∅). However,
some unexpected cases could occur, and the execution would be halted and
return to the exceptional halting state.

(12)[1]

where

(13)[1]

Many cases can cause the exceptional halting function (Z), such as insufficient
gas, invalid instruction, insufficient stack items, JUMP/JUMPI invalid destination,
the stack size larger than 1024, and state modification being attempted during a
static call, etc.

Bitkub Chain (BKC) - Technical Paper
Copyright © 2022 Bitkub Blockchain Technology Co., Ltd All Rights Reserved

15

6. Validation & Finalization

6.1) Finalization
Finalize means permanently added and can not be altered or reverted. In Bitkub
Chain, a block will be considered to be a finalized block when the block
components are valid such as block header, transactions, and uncle block are
valid.

6.2) Validation
6.2.1) Block header validation
Block header validation is done by the consensus engine. In Bitkub Chain,
the block header will be validated based on the rules set by Clique
consensus as follows:

a) Block timestamp must not be more than the current UNIX time
and is not too close to its parent block timestamp.
b) Nonce must be either nonce to vote on adding a new
validator 0xffffffffffffffff or nonce to vote on removing a validator
0x0000000000000000, otherwise will be considered as invalid.
c) Extra data must be contained in both the vanity and signature,
ensures that the block doesn't contain any uncles.
d) Difficulty must be either difficulty for in-turn validator two or
difficulty for out-of-turn validator 1. Otherwise, it will be
considered invalid.
f) The gas limit must be lower than the maximum gas limit 2^63-1.
g) The gas used must be lower than the block gas limit.

6.2.2) Block body validation
a) Transaction validation
Check whether the transaction root hash in the block header T, is
equal to the hash which return from the function C,

(14) (T', R') = C(TXs, To)

where the TXs is a list of transactions and To is an empty tries, the
function C will compute the output as a transaction root hash T',
requires T = T'

b) The uncle

Bitkub Chain (BKC) - Technical Paper
Copyright © 2022 Bitkub Blockchain Technology Co., Ltd All Rights Reserved

16

In Bitkub Chain is based on Clique, which require an empty uncle
block.

6.2.3) State validation
a) The amount of used gas in the state execution process must be
equal to the actual gas used in the block header, otherwise it will be
considered to be invalid.
b) Validate the received block's bloom with the one derived from the
generated receipts.
c) Check whether the state root in the block header S, is equal to
the state root S', which returns from the function D (15),

(15) S' = D(E)

Where E is a StateDB, and the function D will compute the output
as a state root S', requires S = S'

Bitkub Chain (BKC) - Technical Paper
Copyright © 2022 Bitkub Blockchain Technology Co., Ltd All Rights Reserved

17

7. Consensus

7.1) Consensus definition
In a centralized consensus system, it is easy to find an agreement because
everything relies on the central authority, but there are some concerns, e.g., a
single point of failure and unworthy of trust. In contrast with a centralized system,
a distributed system such as Blockchain is reliable. However, there is a challenge
to make everyone on the network agree on the same data without a centralized
authority. Therefore, the consensus is used in a distributed system as a
mechanism in order to find an agreement on a single version of the data between
each node in the network.

7.2) Consensus Mechanism
The consensus mechanism is an essential component inside the Blockchain
which both secures the network and plays on the crypto-economic game theory
to incentivize the validators and prevent some kinds of attacks such as the 51%
attack. There are many consensus mechanisms such as Proof-of-Work,
Proof-of-Stake, Proof-of-Authority, etc. In Bitkub Chain, we use the
Proof-of-Authority consensus until the Erawan Hardfork [28]. Then we move to
use the Proof-of-Stake-Authority.

7.2.1) Proof-of-Stake-Authority (PoSA)
Bitkub Chain changes consensus to the Proof-of-Stake-Authority (PoSA)
consensus because we want to lower the barrier of entry to become the
validator node and encourage the decentralization of Bitkub Chain.
Proof-of-Stake-Authority is a consensus mechanism that combines the
techniques between Proof-of-Stake and Proof-of-Authority consensus.
Proof-of-Stake-Authority uses the staking mechanism to find a set of
authorized validators in an epoch. To become a validator, the candidates
must deposit at least MINIMUM_STAKE_AMOUNT (Appendix E) of KUB
coin (a native coin of Bitkub Chain) in our PoSA_Smart Contract
(Appendix F), and once an epoch reaches a set of validators will be
granted to have an authorized to validate and propose new block in a
Bitkub Chain network. There are two main parts of the Bitkub Chain PoSA
consensus includes

Bitkub Chain (BKC) - Technical Paper
Copyright © 2022 Bitkub Blockchain Technology Co., Ltd All Rights Reserved

18

a) Staking mechanism
Bitkub Chain PoSA uses smart contracts to operate and manage
logic such as staking logic, withdrawal logic, claim reward logic, etc.
There are three main functions:

i) Deposit Once KUB coin is deposited to the PoSA smart contract
and then wrapped KUB to KKUB (KAP-20 KUB). The stakeholder
will receive a Bond (KAP-721) representing the staking information.

Figure-08: Deposit flow

ii) Withdraw The withdraw function will first claim the remaining
reward and then update the Bond state by calling the update,
withdrawing function, and distributing the KKUB to the
stakeholders.

Bitkub Chain (BKC) - Technical Paper
Copyright © 2022 Bitkub Blockchain Technology Co., Ltd All Rights Reserved

19

Figure-09: Withdrawal flow

iii) Claim To claim the reward, the claim function calculates the
reward amount, updates the state of the Bond, and then transfers
the reward as a KKUB to stakeholders.

Figure-10: Claim reward flow

Bitkub Chain (BKC) - Technical Paper
Copyright © 2022 Bitkub Blockchain Technology Co., Ltd All Rights Reserved

20

b) Authority mechanism
In the protocol layer, Bitkub Chain uses Clique to manage the
authority mechanism to control the authorizes of each validator in
an epoch and use the rotation schema for validating the block.

Figure-11: Bitkub Chain PoSA overview architecture

7.2.2) Difference between Clique PoA and Erawan PoSA
a) Block reward distribution

In the Clique consensus, the beneficiary or the Coinbase is a
validator wallet address. However, in the case of PoSA, the
beneficiary is the reward address (smart contract address).

b) Block header contents
In the Clique consensus, the Coinbase field of the block header
keeps the proposed address, but In the PoSA, the Coinbase stores
the reward address and uses the mixDigest field to keep the
proposed address instead.

c) Block header validation
In the Clique consensus, whenever the network reaches an epoch
block, the Coinbase field must be empty to be valid. But in the
PoSA, the Coinbase field always has a value, so we change the

Bitkub Chain (BKC) - Technical Paper
Copyright © 2022 Bitkub Blockchain Technology Co., Ltd All Rights Reserved

21

validation logic from requiring Coinbase to mixDigest to be empty
once it reaches an epoch block [28].

Components Clique (PoA) Erawan (PoSA)

Coinbase Voted address Reward address

MixDigest NULL Voted address

Sealer Address NaN Validator address

Config CliqueConfig ChainConfig

Table-02: Comparison of PoA and PoSA components

Bitkub Chain (BKC) - Technical Paper
Copyright © 2022 Bitkub Blockchain Technology Co., Ltd All Rights Reserved

22

8. Mining and Reward distribution

8.1) Mining mechanism
Bitkub Chain constantly emits a new block every five seconds (see more in the
block period section). Every validator will create a new block (an empty block)
and take the pending transactions from the transaction pool into a new block.
The pending transaction will be sequenced by the gas price (GBit), which means
the transaction with more gas price will have more chances to be included in the
new block.

Figure-12: Mining a new block

Bitkub Chain (BKC) - Technical Paper
Copyright © 2022 Bitkub Blockchain Technology Co., Ltd All Rights Reserved

23

Bitkub Chain uses the Clique mechanism to manage the consensus among the
group of authorized validators to find a validator to mine a new block. The
selected validator will commit, seal and append a new block to the canonical
chain and then broadcast it to the other node in the network. The other nodes on
the Bitkub Chain will receive a new block and perform a block validation
algorithm including;

a) Check if the previous block referenced is valid and exists.
b) Check that the block timestamp is greater than the timestamp of the

previous block, and not lower than the previous block timestamp plus the
block period.

c) Check that the block number, transaction root, uncle root, difficulty, and
block gas limit are valid.

d) Check if the signature of the validator is valid.
e) Check if the Merkle root of the state is equal to the final state root provided

in the block header.

After all is executed and valid, each node will append a new block to the storage.

8.2) Block reward distribution mechanism
The system will incentivize the validator by rewarding the native coin (KUB coin)
and the system will collect rewards from the fee of the transactions included in
the newly mined block. The total block reward is a summation of the transaction
fee in a block, following the equation of block reward.

(18)

g = Gas fee of a transaction
G1 = Gas fee of the first transaction in a block

Gn = Gas fee of the transaction in a block𝑛𝑡ℎ

After the reward has been collected, the system will be distributed to the
beneficiary by default Clique consensus [10]. Hence, it will set the beneficiary to
be the validator or signer address. However, after the Erawan Hard Fork [28], the
beneficiary address will be set to a reward address (contract address).

Bitkub Chain (BKC) - Technical Paper
Copyright © 2022 Bitkub Blockchain Technology Co., Ltd All Rights Reserved

24

9. Block period

In general, Ethereum's main network uses Proof of Work (PoW) as their
consensus, which the block time depends on the number of computational power
(blockchain miner) and difficulty. This consensus consumes more time and energy than
other means in order to create a single block. Nowadays, carbon emission is an
international concern, so PoW should not be the candidate for Bitkub Chain. As a result,
Proof of Stake Authority (PoSA) was chosen to be a Bitkub Chain's consensus (see
session-10). PoSA is faster, and the block time (Tblock) is fixed to five seconds. Even
though the block time was set to five seconds, the actual time (Ttotal) still fluctuates,
affected by many factors such as network, storage, CPU, memory, number of online
validators, etc. The actual can be described as the equation-19 below.

(19)[1] Ttotal = Tblock + y

Let Y follow an ordinary half-normal distribution function. Then, according to the central
limit theorem (see Appendix G), The function came from the collection of block time
aggregated together to create a normal distribution function (see the equation-20) that
estimates the possible variance of block time.

Where x Sec.≥ 5

(20)[1]

From equation [20], it is a continuous function, but the collected data is a discrete
function because we need to observe the collected information for comparison and
estimation. Therefore, the simplest way to estimate is to fit it into a normal distribution
function.

Bitkub Chain (BKC) - Technical Paper
Copyright © 2022 Bitkub Blockchain Technology Co., Ltd All Rights Reserved

25

9.1) Performance comparison
full-online and partial-online validators can cause different block times. The block
time will increase when the whole system condition is not running in an ideal
situation (see Table-03 for comparison).

Table-03 (value in seconds)

The degradation of performance is from the bad condition of the chain. From the
experiment, the distribution of block times can be different as Figure-14.

Bitkub Chain (BKC) - Technical Paper
Copyright © 2022 Bitkub Blockchain Technology Co., Ltd All Rights Reserved

26

Figure-13 compares ideal and bad conditions.

When many blocks are produced, the time per block will increase due to system
inconsistency. In addition, the overall delay time is converted to the normal
distribution function (Equation-20). When the delay from each block was
aggregated together, the expected time per block can be plotted as shown in the
figure below.

Bitkub Chain (BKC) - Technical Paper
Copyright © 2022 Bitkub Blockchain Technology Co., Ltd All Rights Reserved

27

Figure-14

According to CLT, as we can see from the figures, the delay is spreading out and
converging to a normal distribution function in unsuitable conditions.

Bitkub Chain (BKC) - Technical Paper
Copyright © 2022 Bitkub Blockchain Technology Co., Ltd All Rights Reserved

28

10. Architecture

10.1) Blockchain layer
Bitkub Chain relies on the internet protocol (IP), which is widely used nowadays.
The blockchain protocol builds on top of TCP/IP. It transcends IP and becomes
the Internet which can store or send the value called the Internet of value. The
Architecture of the Bitkub Chain can explain as a layer (see Figure-15).

Figure-15: the layer of the chain

10.1.1) Network layer
is the foundation of blockchain because it consists of all components
required to build other higher layers. Generally, DEVP2P [27] uses UDP to
discover another node and TCP to make peer-to-peer connections.

10.1.2) Blockchain core
is the core component of blockchain. It is the source of consensus. After
combining with EVM (Execution module) and on-chain data storage, it will
become the concept of the blockchain paradigm (see section 2)

Bitkub Chain (BKC) - Technical Paper
Copyright © 2022 Bitkub Blockchain Technology Co., Ltd All Rights Reserved

29

10.1.3) Tools & library
facilitate developers to develop applications on the chain more easily. For
example, Web3 can provide ease of programming and connection. This
tool connects web applications and the blockchain.

10.1.4) Application
can refer to a programming language, token standards, and decentralized
application. The contract is nothing but byte code running on every node
verified by the validator nodes.

10.2) Network Architecture
is the network structure of the blockchain connecting peer-to-peer. However,
there is more than one type of node to create a blockchain service. Therefore, we
need four kinds of nodes (see Figure-17).

Figure-16: high-level architecture

10.2.1) Validator node pool
is a series of validator nodes. The primary function is to verify transactions
and then create the block. This type of node is an essential part of the
blockchain system. The chain will stop working if the number of running
validator nodes is less than 50% of all validator nodes. Voting from the
existing validator node is required to add a new validator node to the pool.

Bitkub Chain (BKC) - Technical Paper
Copyright © 2022 Bitkub Blockchain Technology Co., Ltd All Rights Reserved

30

10.2.2) Boot node pool
is a bunch of boot nodes that support the discovered protocol to search
other nodes. Boot nodes are like a relayer helping each node to find other
nodes on the same network via UDP protocol.

10.2.3) Remote procedure call (RPC) Node
is to communicate between blockchain networks and applications.
Everyone in the public domain can run the RPC node independently
without permission from authorized parties.

10.2.4) Archive Node
collects all blockchain headers and contents. In a normal RPC node, it
keeps only the last 128 blocks. However, the archive node collects the
whole on-chain data.

Bitkub Chain (BKC) - Technical Paper
Copyright © 2022 Bitkub Blockchain Technology Co., Ltd All Rights Reserved

31

11. The Advantages of Bitkub Chain

11.1) Blockchain Layer
11.1.1) Block size
The block size of Bitkub Chain is currently set to 60,000,000 gas.
However, it could be increased in the future, which is more than some
other chains, such as the Ethereum blockchain, which sets the limit to
30,000,000 gas. The higher limit of gas per block means higher number of
transactions can be included in a block. However, the larger block size will
also increase the storage cost and require a higher hardware specification
to run a blockchain node.

Figure-17: Bitkub Chain block size

11.1.2) Block time
According to chapter 9 (Block period), Bitkub Chain’s system is fixed to 5
seconds which is faster than the Ethereum network (on average).
Furthermore, the time variation is extremely low due to the low latency of
Bitkub Chain’s network. The speed of a blockchain can be calculated from
block size and block time in terms of TPB (transactions per block).

11.1.3) Transaction fees
The high transaction fees are one of the pain points on the big primitive
blockchains such as Bitcoin or Ethereum. The sender might have to pay
fees worth over a dollar to send a token worth a dollar. There are many
reasons that cause high transaction fees like this, such as coin price, gas
price per unit, and the amount of gas used by a transaction. The coin price

Bitkub Chain (BKC) - Technical Paper
Copyright © 2022 Bitkub Blockchain Technology Co., Ltd All Rights Reserved

32

is out of control because it depends on the market. But the gas price
depends on the crypto-economic model. Ethereum uses the dynamic gas
price mechanism based on network congestion. If the network is
congested, the gas price and the transaction fees will be higher. However,
Bitkub Chain uses a different mechanism called a fixed gas price
mechanism that will stabilize the transaction fees. Bitkub Chain sets the
gas price to 5 GBit (see chapter 9), which is suitable for many business
use cases.

11.1.4) Infrastructure design
All validator nodes on the Bitkub Chain agree to place their node in the
corresponding standard. The environment has to meet our minimum
criteria. It was designed to cover all of the regions to maximize the load or
network connection speed, including CPU speed and memory. Each node
connects to the other nodes via an internal-link network shown in
Figure-18.

Figure-18: Network architecture

Bitkub Chain (BKC) - Technical Paper
Copyright © 2022 Bitkub Blockchain Technology Co., Ltd All Rights Reserved

33

When the validators are in the corresponding environment, the bandwidth
between nodes is almost unlimited because of the optical fiber network. It
connects point-to-point to form a high-speed network. In the future, this
standard will support the scalability of the Bitkub chain.

11.1.5) The comparison of Bitkub Chain

Chain Bitkub Chain Ethereum Huobi ECO Chain
(HECO)

Consensus Proof-of-Stake-Authority Proof-of-Work Proof-of-Stake-Authority

Consensus Algorithm Clique Ethash Congress

Execution Engine EVM EVM EVM

Smart Contract
Language

Solidity, Vyper Solidity, Vyper Solidity, Vyper

Transaction Per Block
(TPB)

2800 1400 1900

Transaction Fees
model

Fixed-rate Variable-rate Variable-rate

Block Time (second) 5 ~15 3

Native Currency KUB ETH HT

Table-04: The comparison of Bitkub Chain

Bitkub Chain (BKC) - Technical Paper
Copyright © 2022 Bitkub Blockchain Technology Co., Ltd All Rights Reserved

34

11.2) Application Layer
11.2.1) Registration
Register Smart Contract (Appendix I) is used on Bitkub Chain for
registering user’s addresses. Moreover, it controls the access to the Bitkub
NEXT.

a) Registration levels
i) Level 0 represents the unregistered addresses.
ii) Level 2 represents the primary registered address. This
level will unlock the Unwrap KKUB feature.
iii) Level 4 represents the secondary registered address.
This level will unlock additional features such as transfer
Token or NFT.
iv) Level 16 represents the advanced registered address.
This level will unlock the specific smart contract feature.

b) Register procedure
i) Registration

● Register via https://kkub-otp.bitkubchain.com by using
a phone number, and their wallet address will be
assigned to level 2

● Register via https://accounts.bitkubnext.com/register
by using phone number, email address, and password
will be assigned to level 4

Once registered successfully, the backend service will call
the batchSetKycCompleted function on the smart contract
to record the level on the blockchain.

Figure-19: Registration flow

Bitkub Chain (BKC) - Technical Paper
Copyright © 2022 Bitkub Blockchain Technology Co., Ltd All Rights Reserved

35

https://kkub-otp.bitkubchain.com/
https://accounts.bitkubnext.com/register

ii) Verify: All official and verified projects must verify the
level of user's registration on Bitkub NEXT by calling
kycLevels function in the smart contract.

Figure-20: Verification flow

11.2.2) KAP token standard
Bitkub Chain has its token standards called KAP, which is inspired by the
Ethereum Request for Comments (ERC) standard. The standard for
fungible tokens is KAP-20 (see Appendix J), and the standard for
non-fungible tokens is KAP-721 (see Appendix J). The main difference
between ERC-20 and KAP-20 is the adminTransfer function. This
standard is useful when the rug pull occurs because an admin of the token
can transfer the token back from the attacker's address. Table-05 is the
illustration of the difference between ERC-20 and KAP-20.

Bitkub Chain (BKC) - Technical Paper
Copyright © 2022 Bitkub Blockchain Technology Co., Ltd All Rights Reserved

36

ERC-20 KAP-20

Events
Transfer(from, to, value) Transfer(from, to, tokens)

Approval(owner, spender, value) Approval(tokenOwner, spender, tokens)

Functions

totalSupply() totalSupply()

balanceOf(account) balanceOf(account)

allowance(owner, spender) allowance(owner, spender)

approve(spender, amount) approve(spender, amount)

transfer(to, amount) transfer(to, amount)

transferFrom(from, to, amount) transferFrom(from, to, amount)

getOwner()

batchTransfer(from, to[], value[])

adminTransfer(from, to, value)

Table-05: The comparison of ERC-20 and KAP-20

a) adminTransfer
adminTransfer is a KAP-specific function that can help the victims
by recovering their tokens from the suspicious wallet in the case of
a fraudulent. The function shall be used by a relevant issuer of
tokens developed on KAP-20 standard.

The improvement of adminTransfer function
The latest upgrade on the adminTransfer function was done to
make the technical process more secure and trustworthy. The
significant difference between the previous version and the new
version is the committee’s ability to transfer tokens. Instead of
having the full control of the tokens movement, the committee
under the new version of adminTransfer has restricted ability to
transfer tokens from the suspicious wallet to only one address, i.e.
a recovery wallet which shall be specifically created for such
alleged fraudulent transaction and managed by the Committee
Smart Contract. This ensures that the suspicious tokens are frozen
during the verification process. To clearly illustrate, the distinction

Bitkub Chain (BKC) - Technical Paper
Copyright © 2022 Bitkub Blockchain Technology Co., Ltd All Rights Reserved

37

between the previous version and the new version is shown in
Table-06.

Actions adminTransfer
(Old)

adminTransfer
(New)

The ability to move tokens
from the suspicious wallet

Yes Yes

The ability to move tokens to
any wallet

Yes
(According to the
relevant policy, the
committee will move
the tokens to the
designated address
instructed by the
proven victims or the
government
authorities (as the
case may be).)

No
(Only to a recovery
wallet or related KYC
wallet)

Table-06: The distinction between the previous version and the new version

How does adminTransfer works
1. Wallet B is suspected of the token fraud.
2. The victim sends an adminTransfer usage request to the

Execution Committee. Alongside the request, the following
evidence should be attached: (a) a police report and/or
written request from the government authority, (b) on-chain
sequences of transaction hashes that correspond to the
fraud between Wallet A and Wallet B.

3. The execution committee executes a function on the
Committee Smart Contract and passes the related data of
the wallets of the suspicious wallet (Wallet B) and the
victim’s wallet.
3.1 The system stores the related data (Txid, wallet address,
amount) of the wallets of the suspicious wallet (Wallet B) and
the victim’s wallet.
3.2 The system automatically creates a new wallet
(Recovery Wallet).

4. The Committee Smart Contract executes an adminTransfer
function to force transferring the tokens in question from a
suspicious wallet (Wallet B).

Bitkub Chain (BKC) - Technical Paper
Copyright © 2022 Bitkub Blockchain Technology Co., Ltd All Rights Reserved

38

5. The tokens have been transferred from Wallet B to be locked
in the Recovery Wallet.

6. In order to recover the locked tokens, the victim has to
create a new wallet (Wallet C) and re-perform a KYC
process.
6.1 The system generates a cryptographic hash from the
KYC data using a keccak256 hashing function (this hash will
represent the identity of a victim).
6.2 The system stores a hash on-chain.

7. The victim sends a writ, a court or tribunal order or judgment,
and/or an order or request of any government or supervisory
authorities (as the case may be) alongside new wallet
(Wallet C) address to the Bitkub Chain operation team (in
case of KKUB) or the relevant operation team of the issuer
of any other KAP-20 based token.

8. The execution committee executes a function to transfer the
locked tokens to a new wallet (Wallet C).
8.1 The system verifies the previous hash and the current
hash of a victim (which must be matched).
8.2 The Committee Smart Contract executes a transfer
function.

9. The locked tokens has been transferred from the Recovery
Wallet to the new wallet (Wallet C) or transferred back to
Wallet B in the case that the alleged transaction has been
proven not a fraud pursuant to a writ, a court or tribunal
order or judgment, and/or an order or request of any
government or supervisory authorities (as the case may be).

Bitkub Chain (BKC) - Technical Paper
Copyright © 2022 Bitkub Blockchain Technology Co., Ltd All Rights Reserved

39

Figure-21: adminTransfer Process (1)

Figure-22: adminTransfer Process (2)

Bitkub Chain (BKC) - Technical Paper
Copyright © 2022 Bitkub Blockchain Technology Co., Ltd All Rights Reserved

40

Note: If any person entitled to the locked tokens pursuant to a writ, a court or
tribunal order or judgement, and/or an order or request of any government or
supervisory authorities is deceased or unable to perform the KYC by
himself/herself, e.g. a disabled person or incompetent person etc, the locked
tokens shall be released to or for the benefit of the entitled person or, in case
of the dead, his/her administrator only when (i) the aforementioned evidence of
such person’s entitlement and a court order appointing an administrator, a
curator or a guardian (as the case may be) of such entitled person are present
to the Bitkub Chain team (in case of KKUB) or the relevant issuer of any other
KAP-20 based token; and (ii) such administrator, curator or guardian (as the
case may be) conducts KYC. In such case, the operation team of the Bitkub
Chain (in case of KKUB) or the relevant issuer of such other KAP-20 based
token will revise the hash of the entitled person’s original wallet (with traceable
changes) and requests such administrator, curator or guardian (as the case
may be) of such entitled person to create a new wallet and conduct KYC under
his/her name such that the locked tokens of the entitled person can be
transferred to the new wallet created by such administrator, curator or guardian
(as the case may be) of the entitled person.

b) batchTransfer
The batch transfer is a KAP-specific function for transferring tokens
to multiple wallets at the same time.

How does batchTransfer works
1. Collect multiple token transfer transaction data
2. Batch them together into a transaction
3. Send a batchTransfer transaction
4. Token transferred to the multiple wallets

The advantages of batchTransfer
1. Cost efficiency: Paying gas only once instead of multiple

times.
2. Time reduction: Send and wait only a transaction instead of

wait multiple transactions

For example: sending a token to the 100 wallets without the
batchTransfer function you have to send a token 100 times,
make 100 transactions, spend enormously gas. On the other
hand, utilizing a batchTransfer function can dramatically
save your gas by sending just a single transaction and
paying gas only once.

Bitkub Chain (BKC) - Technical Paper
Copyright © 2022 Bitkub Blockchain Technology Co., Ltd All Rights Reserved

41

c) getOwner
Get a KYC wallet address of an owner of the smart contract

11.2.3) KKUB
is a token pegged to the KUB coin and conforms to the KAP-20 token
standard. This process can easily convert KUB into KKUB through a
process known as “wrapping” by depositing KUB coins to the smart
contract. Then KKUB will be minted in the same amount as the deposit
amount. or convert KKUB to KUB through a process known as
“unwrapping” by withdrawing the KKUB; it will burn the KKUB and send
the KUB back to the user. The advantage of KKUB (the KAP-20 version of
the KUB coin) is the ability to integrate with Decentralized-Finance (De-Fi)
or Decentralized Application (DApp), which is programmable through the
smart contract. The smart contract’s code was written in solidity language
(Appendix H).

Figure-23: Wrap & Unwrap process of KKUB

11.2.4) HyperBlock
is an algorithm to aggregate transactions from many wallet addresses on
the Bitkub Chain network by making a call to a smart contract (must
contain a batchTransfer function). For example, if A wants to send a token
to B, C, D, and E, A will send only one transaction as a batch transfer
(function on smart contract) instant of sending four separate transactions.
This process can increase the speed of transactions by over 1,000
transactions per second (TPS). HyperBlock consists of four parts:

Bitkub Chain (BKC) - Technical Paper
Copyright © 2022 Bitkub Blockchain Technology Co., Ltd All Rights Reserved

42

a) Backend Service
is responsible for creating a backed transaction pool where an
available thread runs on a background process and matches them
with the admin pool addresses. The transactions matched with a
specific admin address will send out to the smart contract address.
The process can be explained below (Figure-24).

Figure-24 HyperBlock (backend service flow)

b) Gas Tank
is wallet addresses. Those addresses will pay the transaction fees
(gas) for the users in Bitkub’s official project. Therefore, the users
do not need to store KUB coins in their wallets as long as they are
under the Bitkub ecosystem (see Appendix J) such as Bitkub
NEXT. In addition, the users will not be affected by the delay
caused by changing the gasPrice because the Gas tank will always
guarantee a reasonable gasPrice rate to maintain constant
transaction speed.

c) Smart Contract
According to the KAP token standard (see section 11.2.2),
batchTransfer function (Appendix H) is called by the admin from the
pool to send a batch transaction. Without this function, Hyperblock
will not work. All developers working on the Bitkub Chain’s official
projects must implement the KAP Token standard.

Bitkub Chain (BKC) - Technical Paper
Copyright © 2022 Bitkub Blockchain Technology Co., Ltd All Rights Reserved

43

d) Fail-Safe mechanism
Normally, when a transaction fails to execute on the blockchain, the
sender needs to manually re-sent it by themselves. However,
Bitkub Chain has provided the mechanism to automatically re-sent
the failed transaction to maximize the user experience. The
Fail-Safe mechanism works by using an off-chain engine to detect
the failed transaction in the transaction pool and trying to diagnose
the root cause of the failure, and then trying to re-sent it. For
example, the users might send a transaction with a low gas price
relative to the determined gas price by the blockchain, which will
cause the failure. In this case, the Fail-Safe mechanism will
automatically increase the gas price and re-sent.

To summarize, HyperBlock is an engine that combines different modules
and various techniques to maximize the ability to send the transaction to
the Bitkub Chain. The backend module (build-up off-chain) is responsible
for orchestrating the list of transactions requested by the users and then
serving them to the smart contract module (build-up on-chain) as a
batch of transactions. This technique practically improves the number of
transactions (token transfers) to more than one thousand per second.
Moreover, the gas tank module (build-up off-chain) will facilitate user
interaction with the Bitkub Chain without paying the transaction fees by
themselves (only Bitkub Chain official projects) to maximize the user
experience and eliminate the barrier to using the Bitkub Chain. The
overview of system flow can be shown in Figure-25.

Bitkub Chain (BKC) - Technical Paper
Copyright © 2022 Bitkub Blockchain Technology Co., Ltd All Rights Reserved

44

Figure-25: HyperBlock Overview

12. Future Technical Goals

12.1) Scalability

12.1.1) Layer1 Scaling
Scalability is a major challenge in blockchain systems when the number of
nodes and transactions increases. Thus, a Layer1 scaling technique
becomes the primary step to solve this challenge and increase the block
size.

a) Increasing block size
To scale up the limit of transaction Bitkub Chain plans to increase
the block gas limit to more than 60,000,000 gas in the future.
However, increasing block size is one of the Layer1 scaling
techniques which helps enlarger block sizes and accommodate
more transactions per block. However, this technique is simple, but
it may come with many risks.

i) Increased block size will lead to the need to expand the
storage size of the node as well as to upgrade the disk type
to be more efficient. As a result, the cost of running the node
increases.
ii) Increased block synchronization time As the number of
data increases, it takes longer to download and verify the
historical data.
iii) Increased the number of uncle block or chain
reorganization as the increase in block size results in longer
block execution time and longer broadcast block time to
other nodes.
iv) Increased possibility to attack, such as an attack in the
form of Denial-of-Service (DDoS). The larger the attackers
could send the block size, the more malicious transactions.
The attack may cause the network to halt.

b) Sharding
Sharding is one of the layer1 scaling solutions developed and
introduced by Vitalik Buterin [15] Sharding is a technique that

Bitkub Chain (BKC) - Technical Paper
Copyright © 2022 Bitkub Blockchain Technology Co., Ltd All Rights Reserved

45

upgrades to improve the scalability and capacity of a blockchain
network by splitting a blockchain into smaller partitions to increase
the capability to spread the load and process more transactions.
This solution will help the system improve efficiency and be able to
handle more than a thousand transactions per second.
This sharding concept divides a chain into many sub-chains known
as "shard chains" each shard comprises its data and consists of a
unique set of validators called "committees". Each committee will
be assigned to verify each block broadcasted on a different set,
which it could run altogether in parallel. Once all blocks are
executed and validated, validators will attest to the fact and sign a
signature to verify that the block is valid. Hence, it added speed and
accuracy to the verification process.
There are two types of transaction validation on Sharding; a) the
validity of the processing (computation) and b) the availability of the
data (data availability).

i) Validating computation
There are two methods of validating computation: Fraud
proofs and ZK-SNARKs.

● Fraud-proofs
By default, a system will accept the result of
computation but still leaves open the opportunity for
someone else with a staked deposit to make a
challenge when they find or want to argue that the
processing is invalid. However, they can challenge it
by depositing tokens as collateral for proof.

● ZK-SNARKs
use the principle of cryptographic proof to perform
computation and prove that all processing results are
correct, but this method is considerably more complex
and complicated to develop compared to fraud-proof.

ii) Validating Data availability
Verifying data's existence is more difficult when compared to
verifying processing validity. It is impossible to distinguish
who was right and wrong makes it impossible to have a

Bitkub Chain (BKC) - Technical Paper
Copyright © 2022 Bitkub Blockchain Technology Co., Ltd All Rights Reserved

46

working fraud-proof scheme for data availability. Thus, It
cannot use the same techniques such as fraud-proof or
ZK-SNARKs but instead have to use the data availability
sampling technique. Hence, instead of extracting all the
information that we gathered for verification. We will use a
random method to check some chucks of the data instead to
improve slow performance. [23]

12.1.2) Layer2 Scaling
Layer2 Scaling is a solution designed to help increase scalability for
handling more transactions off-chain. By executing it outside (off-chain) of
the main chain (Layer1), it can be done by many techniques such as
Roll-up, Validium, or Plasma.

a) Rollups
i) Optimistic Rollups: Optimistic Rollups is a technique in
which transactions are processed at Layer2, then bundled
into a series of transactions (batch), and then the data is
posted (roll-up) to Layer 1. Optimistic Rollup uses a
technique called fraud-proof to verify the authenticity and
correctness of transactions. Fraud-proof will have the
disadvantage of having a window of time to allow anyone to
prove and challenge the frauds. The current standard delay
was seven days.

ii) ZK-Rollups: ZK-Rollup: Zero Knowledge-Rollup is a
similar concept to "Optimistic Rollups" but uses a different
cryptographic technique called "Zero-Knowledge Proof" to
validate transactions. Before it gets posted to Layer1, this
technique can prove transactions without the need for a
challenging period (7-day delay) like "Optimistic Rollups".
However, this solution may increase the level of difficulty and
create complexity in the development process compared to
the "Optimistic Roll Ups" technique.

b) Plasma
Plasma is a layer2 scaling solution that is built on top of the
root chain (parent chain). The transaction from the parent
chain will be off-loaded and executed by the Plasma chain

Bitkub Chain (BKC) - Technical Paper
Copyright © 2022 Bitkub Blockchain Technology Co., Ltd All Rights Reserved

47

(child chain) while maintaining the validity of the transaction
state by using the fraud proof mechanism [24]. The child
chain has to commit the child chain state periodically by
submitting the Merkle roots of the state of the child chain to
the Plasma contract deployed on-chain. The users can enter
the plasma chain by bridging their token from the parent
chain to the child chain via bridge smart contract and can
exit the child chain by withdrawing the token back to the
parent chain via bridge. However, withdrawing the token to
Layer1 needs a delay time for the fraud proof which is
normally set to 7 days.

c) Validium
Validiums is a Layer2 scaling solution that processes and
stores the state off-chain only the proof that is stored
on-chain (Layer1). Validium is like ZK-Rollups but the data
availability of the Validium is stored off-chain rather than
on-chain. Validiums can process ~9,000 transactions (or
more) per second [24] higher than any other Layer2 solutions
because of the off-chain operation. However, storing and
executing data off-chain has a high risk and requires trust of
the operator. To mitigate the risk validium uses the “Validity
proofs” that can be computed and generated by using both
ZK-SNARKs and ZK-STARKs to prove that the off-chain
state is valid and submit it to the on-chain (Layer1) as a state
commitment and finalization.

12.2) Consensus Improvement
11.2.1) Proof-of-Stake + 3
Proof-of-Stake plus three (PoS+3) is a consensus mechanism that will
reward three validators instead of only a validator compared with normal
Proof-of-Stake. The reward will be split into 3 levels, the in-round (actual)
validator will receive the most reward. The PoS+3 system will select the
top three validators based on the amount of KUB and the last recent time
of reward. This mechanism will help reduce the capitalism problems and
increase the incentive to validators to stay active on secure Bitkub Chain.
While we still keep the core feature of the standard Proof-of-Stake. In the
PoS to achieve distributed consensus. It requires users to stake their KUB

Bitkub Chain (BKC) - Technical Paper
Copyright © 2022 Bitkub Blockchain Technology Co., Ltd All Rights Reserved

48

coins to become validators in the network. The validators are responsible
for the same tasks as validators in Proof-of-Authority (PoA) and the
Proof-of-Stake-Authority (PoSA), which include ordering transactions,
validating the validity of transactions, and creating new blocks. So that all
nodes can agree on the same state of the Bitkub Chain network. PoS+3
have many of advantages includes:

a) Better incentivized (reward) system than normal Proof-of-Stake,
the validators have more chances to get the block reward.

b) Lower barriers are required to promote a new validator, it doesn’t
require submitting the request to existing committees to allow a
new joining before entering the network as a validator. Instead, it
needed a stake of at least a minimum number of KUB to become a
validator, which means in the Proof-of-Stake consensus, anyone
can be a validator of the Bitkub Chain.

c) Stronger immunity to centralization – in Proof-of-Stake consensus
doesn't require hardware devices like Proof-of-Work and doesn't
require authorization like proof-of-authority. Becoming a validator
requires only a chuck of KUB coins to stake. It would make it more
accessible to be a validator, and it's easier to decentralize the
network.
Proof-of-Stake is like any other consensus; it can have a malicious
node. In this case, proof-of-stake introduced a mechanism called
"Slashing." It helps prevent the deliberately misbehaving of
validators [11]. The concept of slashing is to remove some part of
the validator stake or the whole stake in the worst case.

12.3) Bitkub Chain SDK (SDK)
The developer is an essential actor in the decentralized network. However,
creating or developing a decentralized application requires specific technical
knowledge and tools. Bitkub Chain wants to encourage the developer to build on
our ecosystem by introducing the Bitkub Chain software development kit (SDK),
a development tool. The SDK supports developers in developing a project.
Currently, we already publish the Bitkub Chain Javascript SDK [25] any
blockchain developer can easily install by just using the npm or yarn. However,
our team is developing the SDK in the different programming languages to
maximize the development tools to develop the DApp on Bitkub Chain.

Bitkub Chain (BKC) - Technical Paper
Copyright © 2022 Bitkub Blockchain Technology Co., Ltd All Rights Reserved

49

12.4) On-chain static page
Hosting static pages on the blockchain combines the encoding technique and the
on-chain state together. Blockchain is used as a data layer to store the static
page detail and a specific smart contract is used as an encoder and decoder
module to encode the static page source code to the specific format of data and
then pack the data and store on-chain. The on-chain static page will be
distributed among the blockchain node making the static page available for
everyone with high availability (HA) and publicly accessible by everyone in the
world without censorship from the centralized authority (censorship-resistance).

12.5) Verifying standard bytecode
However, many smart contracts had been attacked and the asset in the contract
because there is a bug in the code even though they are audited by the auditors.
One of the reasons that causes the bug is the additional logic and functions that
implemented add-on from the standard function. To prevent or reduce this kind of
vulnerability in the Bitkub Chain ecosystem, we introduced the "Verifying
Standard Bytecode" feature to verify the inheritance of the standard from the
smart contract by comparing the bytecode of the contract with the bytecode of
the standard contract.

Bitkub Chain (BKC) - Technical Paper
Copyright © 2022 Bitkub Blockchain Technology Co., Ltd All Rights Reserved

50

13. Conclusion

Bitkub Chain was created to democratize the opportunity for everyone to access a new
economy (digital asset economy) that gives the right to innovate, design, and develop
under a decentralized infrastructure, and encourages the decentralization and
ownership of digital assets. In addition, Bitkub Chain technically derived some of the
technology from Ethereum, resulting in the same standards, such as EVM compatibility,
making it easier for developers to create and develop applications on top of Bitkub
Chain. Moreover, the faster block times, lower fees, and a modern consensus system
makes users send faster transactions and have a better user experience.

Bitkub Chain (BKC) - Technical Paper
Copyright © 2022 Bitkub Blockchain Technology Co., Ltd All Rights Reserved

51

References

[1] Ethereum Yellow Paper: a formal specification of Ethereum, a programmable blockchain
[2] Yonatan Sompolinsky and Aviv Zohar. Accelerating bitcoin’s transaction processing. Fast
money grows on trees, not chains, 2013.
[3] Ethereum Whitepaper https://ethereum.org/en/whitepaper/
[4] Ethereum Development Documentation https://ethereum.org/en/developers/docs/
[5] How does Ethereum work, anyway
https://www.preethikasireddy.com/post/how-does-ethereum-work-anyway
[6] Merkle tree and Ethereum objects
https://medium.com/coinmonks/detailed-explanation-of-ethereum-yellow-paper-merkle-tree-and-
ethereum-objects-d85edf5051b8
[7] Merkling in Ethereum https://blog.ethereum.org/2015/11/15/merkling-in-ethereum/
[8] Modified Merkle Patricia Trie — How Ethereum saves a state
https://medium.com/codechain/modified-merkle-patricia-trie-how-ethereum-saves-a-state-e6d75
55078dd
[9] Proof of Authority Explained
https://academy.binance.com/en/articles/proof-of-authority-explained
[10] EIP-225: Clique proof-of-authority consensus protocol
https://eips.ethereum.org/EIPS/eip-225
[11] Proof-of-stake (PoS) definition
https://ethereum.org/en/developers/docs/consensus-mechanisms/pos/
[12] Layer2 Scaling https://ethereum.org/en/developers/docs/scaling/
[13] Diving Into The Ethereum Virtual Machine
https://blog.qtum.org/diving-into-the-ethereum-vm-6e8d5d2f3c30
[14] Ethereum State Trie Architecture Explained
https://medium.com/@eiki1212/ethereum-state-trie-architecture-explained-a30237009d4e
[15] Why sharding is great: demystifying the technical properties
https://vitalik.ca/general/2021/04/07/sharding.html
[16] The Limits to Blockchain Scalability https://vitalik.ca/general/2021/05/23/scaling.html
[17] Why Proof-of-Work Is Not Viable in the Long-Term
https://medium.com/logos-network/why-proof-of-work-is-not-viable-in-the-long-term-dd96d2775e
99
[18] The Ethereum Virtual Machine https://faun.pub/the-ethereum-virtual-machine-d70dfa5f045b
[19] Mastering Ethereum https://cypherpunks-core.github.io/ethereumbook/
[20] Ethereum EVM illustrated
https://takenobu-hs.github.io/downloads/ethereum_evm_illustrated.pdf
[21] Go-Ethereum https://github.com/ethereum/go-ethereum

Bitkub Chain (BKC) - Technical Paper
Copyright © 2022 Bitkub Blockchain Technology Co., Ltd All Rights Reserved

52

https://ethereum.github.io/yellowpaper/paper.pdf
https://ethereum.org/en/whitepaper/
https://ethereum.org/en/developers/docs/
https://www.preethikasireddy.com/post/how-does-ethereum-work-anyway
https://medium.com/coinmonks/detailed-explanation-of-ethereum-yellow-paper-merkle-tree-and-ethereum-objects-d85edf5051b8
https://medium.com/coinmonks/detailed-explanation-of-ethereum-yellow-paper-merkle-tree-and-ethereum-objects-d85edf5051b8
https://blog.ethereum.org/2015/11/15/merkling-in-ethereum/
https://medium.com/codechain/modified-merkle-patricia-trie-how-ethereum-saves-a-state-e6d7555078dd
https://medium.com/codechain/modified-merkle-patricia-trie-how-ethereum-saves-a-state-e6d7555078dd
https://academy.binance.com/en/articles/proof-of-authority-explained
https://eips.ethereum.org/EIPS/eip-225
https://ethereum.org/en/developers/docs/consensus-mechanisms/pos/
https://ethereum.org/en/developers/docs/scaling/
https://blog.qtum.org/diving-into-the-ethereum-vm-6e8d5d2f3c30
https://medium.com/@eiki1212/ethereum-state-trie-architecture-explained-a30237009d4e
https://vitalik.ca/general/2021/04/07/sharding.html
https://vitalik.ca/general/2021/05/23/scaling.html
https://medium.com/logos-network/why-proof-of-work-is-not-viable-in-the-long-term-dd96d2775e99
https://medium.com/logos-network/why-proof-of-work-is-not-viable-in-the-long-term-dd96d2775e99
https://faun.pub/the-ethereum-virtual-machine-d70dfa5f045b
https://cypherpunks-core.github.io/ethereumbook/
https://takenobu-hs.github.io/downloads/ethereum_evm_illustrated.pdf
https://github.com/ethereum/go-ethereum

[22] The Central Limit Theorem and Means
https://www.statisticshowto.com/probability-and-statistics/normal-distributions/central-limit-theor
em-definition-examples/
[23] An explanation of the sharding + DAS proposal https://hackmd.io/
@vbuterin/sharding_proposal#ELI5-data-availability-sampling
[24] Scaling https://ethereum.org/en/developers/docs/scaling/
[25] Bitkub Chain JS SDK https://www.npmjs.com/package/@bitkub-blockchain/sdk
[26] Ethash
https://ethereum.org/th/developers/docs/consensus-mechanisms/pow/mining-algorithms/ethash
[27] Devp2p https://github.com/ethereum/devp2p
[28] BKC Erawan Hardfork https://github.com/bitkub-blockchain/bkc/releases

Bitkub Chain (BKC) - Technical Paper
Copyright © 2022 Bitkub Blockchain Technology Co., Ltd All Rights Reserved

53

https://www.statisticshowto.com/probability-and-statistics/normal-distributions/central-limit-theorem-definition-examples/
https://www.statisticshowto.com/probability-and-statistics/normal-distributions/central-limit-theorem-definition-examples/
https://hackmd.io/@vbuterin/sharding_proposal#ELI5-data-availability-sampling
https://hackmd.io/@vbuterin/sharding_proposal#ELI5-data-availability-sampling
https://ethereum.org/en/developers/docs/scaling/
https://www.npmjs.com/package/@bitkub-blockchain/sdk
https://ethereum.org/th/developers/docs/consensus-mechanisms/pow/mining-algorithms/ethash
https://github.com/ethereum/devp2p
https://github.com/bitkub-blockchain/bkc/releases

Appendix A. Fee Schedule

The fee schedule G is a tuple of scalar values corresponding to the relative costs, in
gas, of a number of abstract operations that a transaction may affect.

Name Value Description
Gzero 0 Nothing paid for operations of the set Wzero.
Gjumpdest 1 Amount of gas to pay for a JUMPDEST operation.
Gbase 2 Amount of gas to pay for operations of the set Wbase.
Gverylow 3 Amount of gas to pay for operations of the set Wverylow.
Glow 5 Amount of gas to pay for operations of the set Wlow.
Gmid 8 Amount of gas to pay for operations of the set Wmid.
Ghigh 10 Amount of gas to pay for operations of the set Whigh.
Gwarmaccess 100 Cost of a warm account or storage access.
Gaccesslistaddress 2400 Cost of warming up an account with the access list.
Gaccessliststorage 1900 Cost of warming up a storage with the access list.
Gcoldaccountaccess 2600 Cost of a cold account access.
Gcoldsload 2100 Cost of a cold storage access.
Gsset 20000 Paid for an SSTORE operation when the storage value is set

to non-zero from zero.
Gsreset 2900 Paid for an SSTORE operation when the storage value’s

zeroness remains unchanged or is set to zero.
Rsclear 15000 Refund given (added into refund counter) when the

storage value is set to zero from non-zero.
Rselfdestruct 24000 Refund given (added into refund counter) for

self-destructing an account.
Gselfdestruct 5000 Amount of gas to pay for a SELFDESTRUCT operation.
Gcreate 32000 Paid for a CREATE operation.
Gcodedeposit 200 Paid per byte for a CREATE operation to succeed in placing

code into state.
Gcallvalue 9000 Paid for a non-zero value transfer as part of the CALL

operation.
Gcallstipend 2300 A stipend for the called contract subtracted from Gcallvalue

for a non-zero value transfer.
Gnewaccount 25000 Paid for a CALL or SELFDESTRUCT operation which creates

an account.
Gexp 10 Partial payment for an EXP operation.
Gexpbyte 50 Partial payment when multiplied by the number of bytes

in the exponent for the EXP operation.
Gmemory 3 Paid for every additional word when expanding memory.
Gtxcreate 32000 Paid by all contract-creating transactions after the

Homestead transition.

Bitkub Chain (BKC) - Technical Paper
Copyright © 2022 Bitkub Blockchain Technology Co., Ltd All Rights Reserved

54

Gtxdatazero 4 Paid for every zero byte of data or code for a transaction.
Gtxdatanonzero 16 Paid for every non-zero byte of data or code for a

transaction.
Gtransaction 21000 Paid for every transaction.
Glog 375 Partial payment for a LOG operation.
Glogdata 8 Paid for each byte in a LOG operation’s data.
Glogtopic 375 Paid for each topic of a LOG operation.
Gkeccak256 30 Paid for each KECCAK256 operation.
Gkeccak256word 6 Paid for each word (rounded up) for input data to a

KECCAK256 operation.
Gcopy 3 Partial payment for *COPY operations, multiplied by words

copied, rounded up.
Gblockhash 20 Payment for each BLOCKHASH operation.

Bitkub Chain (BKC) - Technical Paper
Copyright © 2022 Bitkub Blockchain Technology Co., Ltd All Rights Reserved

55

Appendix B: Virtual Machine Specification

with CCALL, CSELFDESTRUCT, CSLOAD and CSSTORE as specified in the appropriate section below. We
define the following subsets of instructions:
Wzero = {STOP, RETURN, REVERT}

Bitkub Chain (BKC) - Technical Paper
Copyright © 2022 Bitkub Blockchain Technology Co., Ltd All Rights Reserved

56

Wbase = {ADDRESS, ORIGIN, CALLER, CALLVALUE, CALLDATASIZE, CODESIZE,
GASPRICE, COINBASE,TIMESTAMP, NUMBER, DIFFICULTY, GASLIMIT, CHAINID,
RETURNDATASIZE, POP, PC, MSIZE, GAS}

Wverylow = {ADD, SUB, NOT, LT, GT, SLT, SGT, EQ, ISZERO, AND, OR, XOR, BYTE, SHL,
SHR, SAR,CALLDATALOAD, MLOAD, MSTORE, MSTORE8, PUSH*, DUP*,
SWAP*}

Wlow = {MUL, DIV, SDIV, MOD, SMOD, SIGNEXTEND, SELFBALANCE}
Wmid = {ADDMOD, MULMOD, JUMP}
Whigh = {JUMPI}
Wcopy = {CALLDATACOPY, CODECOPY, RETURNDATACOPY}
Wcall = {CALL, CALLCODE, DELEGATECALL, STATICCALL}
Wextaccount = {BALANCE, EXTCODESIZE, EXTCODEHASH}

Note the memory cost component, given as the product of Gmemory and the maximum of 0 & the
ceiling of the number of words in size that the memory must be over the current number of
words, µi in order that all accesses reference valid memory whether for read or write. Such
accesses must be for non-zero number of bytes. Referencing a zero length range (e.g. by
attempting to pass it as the input range to a CALL) does not require memory
to be extended to the beginning of the range. µ0i is defined as this new maximum number of
words of active memory; special-cases are given where these two are not equal.

Note also that Cmem is the memory cost function (the expansion function being the difference
between the cost before and after). It is a polynomial, with the higher-order coefficient divided
and floored, and thus linear up to 724B of memory used, after which it costs substantially more.

Bitkub Chain (BKC) - Technical Paper
Copyright © 2022 Bitkub Blockchain Technology Co., Ltd All Rights Reserved

57

Appendix C: Substrate

Substrate A, is a set of information which accumulated during the transaction execution
process. The information is a tuple that include self-destruct set (S), the log series (L),
the set of touched accounts (T), the refund balance (R), the set of accessed account
addresses (C) and the set of accessed storage keys (K).

A = Tuple(S, L, T, R, C, K)

Bitkub Chain (BKC) - Technical Paper
Copyright © 2022 Bitkub Blockchain Technology Co., Ltd All Rights Reserved

58

Appendix D: The execution environment information

List of the execution environment information refer as the tuple I, include:
● Address of the account that owns the code that is executing (A)
● Address of the sender of the transaction that originated this execution (O)
● Address of the account that caused the code to execute which could be different

from the original sender (S)
● Gas price of the transaction that originated this execution (P)
● Input data for the execution (D)
● Value (in Wei) passed to this account as part of the current execution (V)
● Machine code to be executed (B)
● Block header of the current block (H)
● Depth of the present message call or contract creation stack (E)
● The permission to modify the state. (W)

I = Tuple(A,O, S, P, D, V, B, H. E. W)

Bitkub Chain (BKC) - Technical Paper
Copyright © 2022 Bitkub Blockchain Technology Co., Ltd All Rights Reserved

59

Appendix E: Staking Constant Variables

MINIMUM_STAKE = 250,000 KUB

Bitkub Chain (BKC) - Technical Paper
Copyright © 2022 Bitkub Blockchain Technology Co., Ltd All Rights Reserved

60

Appendix F: PoSA Smart Contracts

1. PoSAContract

pragma solidity 0.8.0;

contract POSAContract is IPOSAContract, IKYC, Authorization, Committee, KYCHandler,
ReentrancyGuard {
using EnumerableSetAddress for EnumerableSetAddress.AddressSet;

event AdminKAP20RouterSet(
address indexed oldAdminKAP20Router,
address indexed newAdminKAP20Router,
address indexed caller

);
event KKUBSet(address indexed oldKKUB, address indexed newKKUB, address indexed

caller);
event POSABondSet(address indexed oldPOSABond, address indexed newPOSABond, address

indexed caller);
event POSABondInfoSet(address indexed oldPOSABondInfo, address indexed

newPOSABondInfo, address indexed caller);
event POSARewardCalculatorSet(

address indexed oldPOSARewardCalculator,
address indexed newPOSARewardCalculator,
address indexed caller

);
event KYCSet(address indexed oldKYC, address indexed newKYC, address indexed

caller);
event AcceptedKYCLevelSet(

uint256 indexed oldAcceptedKYCLevel,
uint256 indexed newAcceptedKYCLevel,
address indexed caller

);

uint256 public hardcap; // expected to be X KUB
uint256 public totalDeposited;
uint256 public totalClaimed;
uint256 public maximumDepositPerUser; // X KUB / user
uint256 public endDepositDate;
uint256 public withdrawDate;

Flag public paused;
IPOSABond public POSABond;
IPOSABondInfo public POSABondInfo;
IPOSARewardCalculator public POSARewardCalculator;

Bitkub Chain (BKC) - Technical Paper
Copyright © 2022 Bitkub Blockchain Technology Co., Ltd All Rights Reserved

61

IAdminKAP20Router public adminKAP20Router;
IKKUB public immutable KKUB;

bool public metaMaskEnabled;
bool public bitkubNextEnabled;

mapping(address => uint256) public depositBalance;

EnumerableSetAddress.AddressSet private _whitelistLimit;
uint256[] private _tokenIDs;

modifier whenNotPausedDeposit() {
require(!paused.depositPaused, "Pause: deposit paused");
_;

}

modifier whenNotPausedWithdraw() {
require(!paused.withdrawPaused, "Pause: withdraw paused");
_;

}

modifier whenNotPausedClaim() {
require(!paused.claimPaused, "Pause: claim paused");
_;

}

modifier whenNotPausedEmergencyWithdraw() {
require(!paused.emergencyWithdrawPaused, "Pause: emergency withdraw paused");
_;

}

modifier checkBitkubNext(address _bitkubNext) {
require(bitkubNextEnabled, "BitkubNext disabled");
require(kyc.kycsLevel(_bitkubNext) >= acceptedKYCLevel, "only BitkubNext user");
_;

}

modifier checkMetaMask(address _sender) {
require(metaMaskEnabled, "Metamask disabled");
require(_whitelistLimit.contains(_sender), "not in whitelist");
_;

}

modifier checkDepositRequirement(uint256 _amount, address _sender) {
require(_amount > 0, "require amount > 0");
require(totalDeposited + _amount <= hardcap, "amount exceeds hardcap");

Bitkub Chain (BKC) - Technical Paper
Copyright © 2022 Bitkub Blockchain Technology Co., Ltd All Rights Reserved

62

require(block.timestamp < endDepositDate, "not in deposit period");
_;

}

constructor(ConstructorInput memory _input) {
require(_input.maximumDepositPerUser > 0, "require maximumDepositPerUser>0");
require(_input.endDepositDate > block.timestamp, "require endDepositDate > now");
require(_input.withdrawDate > _input.endDepositDate, "need

withdrawDate>endDepositDate");
adminProjectRouter = IAdminProjectRouter(_input.adminInput.adminProjectRouter);
adminKAP20Router = IAdminKAP20Router(_input.adminInput.adminKAP20Router);
committee = _input.adminInput.committee;

POSABond = IPOSABond(_input.bondInput.POSABond);
POSABondInfo = IPOSABondInfo(_input.bondInput.POSABondInfo);
POSARewardCalculator =

IPOSARewardCalculator(_input.bondInput.POSARewardCalculator);

kyc = IKYCBitkubChain(_input.kycInput.kyc);
acceptedKYCLevel = _input.kycInput.acceptedKYCLevel;

KKUB = IKKUB(_input.KKUB);
hardcap = _input.hardcap;
maximumDepositPerUser = _input.maximumDepositPerUser;
endDepositDate = _input.endDepositDate;
withdrawDate = _input.withdrawDate;
metaMaskEnabled = _input.enabled[0];
bitkubNextEnabled = _input.enabled[1];

paused.depositPaused = false;
paused.withdrawPaused = false;
paused.claimPaused = false;
paused.emergencyWithdrawPaused = true;

}

///////////////////////// read //////////////////////////

function whitelistLimit() external view override returns (address[] memory) {
return _whitelistLimit.getAll();

}

function whitelistLimitLength() external view override returns (uint256) {
return _whitelistLimit.length();

}

function whitelistLimitByPage(uint256 _page, uint256 _limit) external view override
returns (address[] memory) {

Bitkub Chain (BKC) - Technical Paper
Copyright © 2022 Bitkub Blockchain Technology Co., Ltd All Rights Reserved

63

return _whitelistLimit.get(_page, _limit);
}

function tokenLength() external view returns (uint256) {
return _tokenIDs.length;

}

function tokenIDByPage(uint256 _page, uint256 _limit) external view returns
(uint256[] memory) {

require(_page > 0 && _limit > 0);
uint256 tempLength = _limit;
uint256 cursor = (_page - 1) * _limit;
uint256 _uintLength = _tokenIDs.length;
if (cursor >= _uintLength) {

return new uint256[](0);
}
if (tempLength > _uintLength - cursor) {

tempLength = _uintLength - cursor;
}
uint256[] memory uintList = new uint256[](tempLength);
for (uint256 i = 0; i < tempLength; i++) {

uintList[i] = _tokenIDs[cursor + i];
}
return uintList;

}

function pendingReward(uint256 _tokenID) public view override returns (uint256) {
(uint256 amount, , , uint256 rewardClaimed, , address poolAddress, bool

activated) = POSABondInfo.bondInfo(
_tokenID

);
require(poolAddress == address(this), "not bond of this pool");
if (activated) {

return _pendingReward(amount, rewardClaimed);
} else {

return 0;
}

}

function _pendingReward(uint256 _amount, uint256 _rewardClaimed) internal view
returns (uint256) {

return
POSARewardCalculator.calculateReward(

address(this).balance,
_amount,
_rewardClaimed,
totalDeposited,

Bitkub Chain (BKC) - Technical Paper
Copyright © 2022 Bitkub Blockchain Technology Co., Ltd All Rights Reserved

64

totalClaimed
);

}

function cumulativeReward() external view override returns (uint256) {
return address(this).balance + totalClaimed;

}

///

//////////////////////// setter /////////////////////////

function setAdminProjectRouter(address _adminProjectRouter) public override
onlyCommittee {

require(_adminProjectRouter != address(0), "Authorization: new admin project
router is the zero address");

emit AdminProjectRouterSet(address(adminProjectRouter), _adminProjectRouter,
msg.sender);

adminProjectRouter = IAdminProjectRouter(_adminProjectRouter);
}

function setAdminKAP20Router(address _adminKAP20Router) external override
onlyCommittee {

emit AdminKAP20RouterSet(address(adminKAP20Router), _adminKAP20Router,
msg.sender);

adminKAP20Router = IAdminKAP20Router(_adminKAP20Router);
}

function setPOSABond(address _POSABond) external onlyCommittee {
emit POSABondSet(address(POSABond), _POSABond, msg.sender);
POSABond = IPOSABond(_POSABond);

}

function setPOSABondInfo(address _POSABondInfo) external onlyCommittee {
emit POSABondInfoSet(address(POSABondInfo), _POSABondInfo, msg.sender);
POSABondInfo = IPOSABondInfo(_POSABondInfo);

}

function setPOSARewardCalculator(address _POSARewardCalculator) external
onlyCommittee {

emit POSARewardCalculatorSet(address(POSARewardCalculator),
_POSARewardCalculator, msg.sender);

POSARewardCalculator = IPOSARewardCalculator(_POSARewardCalculator);
}

function setKYC(address _kyc) external override onlyCommittee {
emit KYCSet(address(kyc), _kyc, msg.sender);

Bitkub Chain (BKC) - Technical Paper
Copyright © 2022 Bitkub Blockchain Technology Co., Ltd All Rights Reserved

65

kyc = IKYCBitkubChain(_kyc);
}

function setAcceptedKYCLevel(uint256 _acceptedKYCLevel) external override
onlyCommittee {

emit AcceptedKYCLevelSet(acceptedKYCLevel, _acceptedKYCLevel, msg.sender);
acceptedKYCLevel = _acceptedKYCLevel;

}

///

function setHardcap(uint256 _hardcap) external override onlyCommittee {
require(_hardcap > 0, "require hardcap > 0");
require(_hardcap >= totalDeposited, "require hardcap>=totalDeposited");
hardcap = _hardcap;

}

function setMaximumDepositPerUser(uint256 _maximumDepositPerUser) external override
onlyCommittee {

require(_maximumDepositPerUser > 0, "require maximumDepositPerUser>0");
maximumDepositPerUser = _maximumDepositPerUser;

}

function setEndDepositDate(uint256 _endDepositDate) external override onlyCommittee
{

require(block.timestamp < endDepositDate, "require now < endDepositDate");
require(_endDepositDate > 0, "require endDepositDate > 0");
require(_endDepositDate < withdrawDate, "require endDeposit < withdraw");
endDepositDate = _endDepositDate;

}

function setWithdrawDate(uint256 _withdrawDate) external override onlyCommittee {
require(block.timestamp < withdrawDate, "require now < withdrawDate");
require(_withdrawDate > endDepositDate, "require withdraw > endDeposit");
withdrawDate = _withdrawDate;

}

///

function setEnabled(bool[2] memory _enabled) external override onlyCommittee {
metaMaskEnabled = _enabled[0];
bitkubNextEnabled = _enabled[1];

}

function addWhitelistLimit(address _addr) external override onlySuperAdmin {
require(_whitelistLimit.add(_addr), "can't add this address");

}

Bitkub Chain (BKC) - Technical Paper
Copyright © 2022 Bitkub Blockchain Technology Co., Ltd All Rights Reserved

66

function removeWhitelistLimit(address _addr) external override onlySuperAdmin {
require(_whitelistLimit.remove(_addr), "can't remove this address");

}

///

function pause(Flag memory _paused) external override onlyCommittee {
paused = _paused;

}

function emergencyWithdrawKUB(address _to, uint256 _amount)
external
override
onlyCommittee
whenNotPausedEmergencyWithdraw

{
(bool success,) = _to.call{ value: _amount }("");
require(success, "unable to send value");

}

//

/////////////////////// deposit //////////////////////////

function deposit()
external
payable
override
nonReentrant
checkMetaMask(msg.sender)
checkDepositRequirement(msg.value, msg.sender)

{
KKUB.deposit{ value: msg.value }();
_deposit(msg.sender, msg.value);

}

function deposit(uint256 _amount)
external
override
nonReentrant
checkMetaMask(msg.sender)
checkDepositRequirement(_amount, msg.sender)

{
bool success = KKUB.transferFrom(msg.sender, address(this), _amount);
require(success, "failed to transfer KKUB");
_deposit(msg.sender, _amount);

Bitkub Chain (BKC) - Technical Paper
Copyright © 2022 Bitkub Blockchain Technology Co., Ltd All Rights Reserved

67

}

function deposit(uint256 _amount, address _bitkubNext)
external
override
nonReentrant
onlySuperAdmin
checkBitkubNext(_bitkubNext)
checkDepositRequirement(_amount, _bitkubNext)

{
if (!_whitelistLimit.contains(_bitkubNext)) {

require(depositBalance[_bitkubNext] + _amount <= maximumDepositPerUser, "amount
exceeds maximum deposit");

}
adminKAP20Router.externalTransferKKUB(address(0), _bitkubNext, address(this),

_amount, 0);
_deposit(_bitkubNext, _amount);

}

function _deposit(address _sender, uint256 _amount) internal whenNotPausedDeposit {
uint256 tokenID = POSABond.mint(_sender, _amount);
_tokenIDs.push(tokenID);
depositBalance[_sender] += _amount;
totalDeposited += _amount;
emit Deposit(_sender, tokenID, _amount);

}

//

//////////////////////// claim ///////////////////////////

function claim(uint256 _tokenID) external override nonReentrant
checkMetaMask(msg.sender) {

(uint256 amount, uint256 rewardClaimed) = _loadBondInfo(_tokenID);

_claim(msg.sender, _tokenID, amount, rewardClaimed);
}

function claim(uint256 _tokenID, address _bitkubNext)
external
override
nonReentrant
onlySuperAdmin
checkBitkubNext(_bitkubNext)

{
(uint256 amount, uint256 rewardClaimed) = _loadBondInfo(_tokenID);

Bitkub Chain (BKC) - Technical Paper
Copyright © 2022 Bitkub Blockchain Technology Co., Ltd All Rights Reserved

68

_claim(_bitkubNext, _tokenID, amount, rewardClaimed);
}

function _claim(
address _sender,
uint256 _tokenID,

uint256 _amount,
uint256 _rewardClaimed

) internal whenNotPausedClaim {
require(block.timestamp >= endDepositDate, "require now >= endDepositDate");
require(_sender == POSABond.ownerOf(_tokenID), "not owner");

uint256 reward = _pendingReward(_amount, _rewardClaimed);
POSABondInfo.updateClaimReward(_tokenID, reward);

if (reward > 0) {
totalClaimed += reward;
_wrapRewardAndSendKKUB(_sender, reward);

}
emit ClaimReward(_sender, _tokenID, reward);

}

//

/////////////////////// withdraw /////////////////////////

function withdraw(uint256 _tokenID) external override nonReentrant
checkMetaMask(msg.sender) {

_withdraw(_tokenID, msg.sender);
}

function withdraw(uint256 _tokenID, address _bitkubNext)
external
override
nonReentrant
onlySuperAdmin
checkBitkubNext(_bitkubNext)

{
_withdraw(_tokenID, _bitkubNext);

}

function _withdraw(uint256 _tokenID, address _sender) internal
whenNotPausedWithdraw {

require(block.timestamp >= withdrawDate, "require now >= withdrawDate");

(uint256 amount, uint256 rewardClaimed) = _loadBondInfo(_tokenID);

Bitkub Chain (BKC) - Technical Paper
Copyright © 2022 Bitkub Blockchain Technology Co., Ltd All Rights Reserved

69

_claim(_sender, _tokenID, amount, rewardClaimed);

POSABondInfo.updateWithdraw(_tokenID);
_sendKKUB(_sender, amount);
emit Withdraw(_sender, _tokenID, amount);

}

function emergencyWithdraw(uint256 _tokenID) external override nonReentrant
checkMetaMask(msg.sender) {

_emergencyWithdraw(_tokenID, msg.sender);
}

function emergencyWithdraw(uint256 _tokenID, address _bitkubNext)
external
override
nonReentrant
onlySuperAdmin
checkBitkubNext(_bitkubNext)

{
_emergencyWithdraw(_tokenID, _bitkubNext);

}

function _emergencyWithdraw(uint256 _tokenID, address _sender) internal
whenNotPausedEmergencyWithdraw {

require(_sender == POSABond.ownerOf(_tokenID), "not owner");

(uint256 amount,) = _loadBondInfo(_tokenID);

POSABondInfo.updateWithdraw(_tokenID);
_sendKKUB(_sender, amount);
emit EmergencyWithdraw(_sender, _tokenID, amount);

}

//

function _loadBondInfo(uint256 _tokenID) internal view returns (uint256, uint256) {
(uint256 amount, , , uint256 rewardClaimed, , address poolAddress,) =

POSABondInfo.bondInfo(_tokenID);
require(poolAddress == address(this), "not bond of this pool");
return (amount, rewardClaimed);

}

function _wrapRewardAndSendKKUB(address _addr, uint256 _amount) internal {
KKUB.deposit{ value: _amount }();
_sendKKUB(_addr, _amount);

}

Bitkub Chain (BKC) - Technical Paper
Copyright © 2022 Bitkub Blockchain Technology Co., Ltd All Rights Reserved

70

function _sendKKUB(address _addr, uint256 _amount) internal {
bool success = KKUB.transfer(_addr, _amount);
require(success, "failed to transfer KKUB");

}
}
a solidity 0.8.0;

contract POSAContract is IPOSAContract, IKYC, Authorization, Committee, KYCHandler,
ReentrancyGuard {
using EnumerableSetAddress for EnumerableSetAddress.AddressSet;

event AdminKAP20RouterSet(
address indexed oldAdminKAP20Router,
address indexed newAdminKAP20Router,
address indexed caller

);
event KKUBSet(address indexed oldKKUB, address indexed newKKUB, address indexed

caller);
event POSABondSet(address indexed oldPOSABond, address indexed newPOSABond, address

indexed caller);
event POSABondInfoSet(address indexed oldPOSABondInfo, address indexed

newPOSABondInfo, address indexed caller);
event POSARewardCalculatorSet(

address indexed oldPOSARewardCalculator,
address indexed newPOSARewardCalculator,
address indexed caller

);
event KYCSet(address indexed oldKYC, address indexed newKYC, address indexed

caller);
event AcceptedKYCLevelSet(

uint256 indexed oldAcceptedKYCLevel,
uint256 indexed newAcceptedKYCLevel,
address indexed caller

);

uint256 public hardcap; // expected to be X KUB
uint256 public totalDeposited;
uint256 public totalClaimed;
uint256 public maximumDepositPerUser; // X KUB / user
uint256 public endDepositDate;
uint256 public withdrawDate;

Flag public paused;
IPOSABond public POSABond;
IPOSABondInfo public POSABondInfo;
IPOSARewardCalculator public POSARewardCalculator;

Bitkub Chain (BKC) - Technical Paper
Copyright © 2022 Bitkub Blockchain Technology Co., Ltd All Rights Reserved

71

IAdminKAP20Router public adminKAP20Router;
IKKUB public immutable KKUB;

bool public metaMaskEnabled;
bool public bitkubNextEnabled;

mapping(address => uint256) public depositBalance;

EnumerableSetAddress.AddressSet private _whitelistLimit;
uint256[] private _tokenIDs;

modifier whenNotPausedDeposit() {
require(!paused.depositPaused, "Pause: deposit paused");
_;

}

modifier whenNotPausedWithdraw() {
require(!paused.withdrawPaused, "Pause: withdraw paused");
_;

}

modifier whenNotPausedClaim() {
require(!paused.claimPaused, "Pause: claim paused");
_;

}

modifier whenNotPausedEmergencyWithdraw() {
require(!paused.emergencyWithdrawPaused, "Pause: emergency withdraw paused");
_;

}

modifier checkBitkubNext(address _bitkubNext) {
require(bitkubNextEnabled, "BitkubNext disabled");
require(kyc.kycsLevel(_bitkubNext) >= acceptedKYCLevel, "only BitkubNext user");
_;

}

modifier checkMetaMask(address _sender) {
require(metaMaskEnabled, "Metamask disabled");
require(_whitelistLimit.contains(_sender), "not in whitelist");
_;

}

modifier checkDepositRequirement(uint256 _amount, address _sender) {
require(_amount > 0, "require amount > 0");
require(totalDeposited + _amount <= hardcap, "amount exceeds hardcap");
require(block.timestamp < endDepositDate, "not in deposit period");

Bitkub Chain (BKC) - Technical Paper
Copyright © 2022 Bitkub Blockchain Technology Co., Ltd All Rights Reserved

72

_;
}

constructor(ConstructorInput memory _input) {
require(_input.maximumDepositPerUser > 0, "require maximumDepositPerUser>0");
require(_input.endDepositDate > block.timestamp, "require endDepositDate > now");
require(_input.withdrawDate > _input.endDepositDate, "need

withdrawDate>endDepositDate");
adminProjectRouter = IAdminProjectRouter(_input.adminInput.adminProjectRouter);
adminKAP20Router = IAdminKAP20Router(_input.adminInput.adminKAP20Router);
committee = _input.adminInput.committee;

POSABond = IPOSABond(_input.bondInput.POSABond);
POSABondInfo = IPOSABondInfo(_input.bondInput.POSABondInfo);
POSARewardCalculator =

IPOSARewardCalculator(_input.bondInput.POSARewardCalculator);

kyc = IKYCBitkubChain(_input.kycInput.kyc);
acceptedKYCLevel = _input.kycInput.acceptedKYCLevel;

KKUB = IKKUB(_input.KKUB);
hardcap = _input.hardcap;
maximumDepositPerUser = _input.maximumDepositPerUser;
endDepositDate = _input.endDepositDate;
withdrawDate = _input.withdrawDate;
metaMaskEnabled = _input.enabled[0];
bitkubNextEnabled = _input.enabled[1];

paused.depositPaused = false;
paused.withdrawPaused = false;
paused.claimPaused = false;
paused.emergencyWithdrawPaused = true;

}

///////////////////////// read //////////////////////////

function whitelistLimit() external view override returns (address[] memory) {
return _whitelistLimit.getAll();

}

function whitelistLimitLength() external view override returns (uint256) {
return _whitelistLimit.length();

}

function whitelistLimitByPage(uint256 _page, uint256 _limit) external view override
returns (address[] memory) {

return _whitelistLimit.get(_page, _limit);

Bitkub Chain (BKC) - Technical Paper
Copyright © 2022 Bitkub Blockchain Technology Co., Ltd All Rights Reserved

73

}

function tokenLength() external view returns (uint256) {
return _tokenIDs.length;

}

function tokenIDByPage(uint256 _page, uint256 _limit) external view returns
(uint256[] memory) {

require(_page > 0 && _limit > 0);
uint256 tempLength = _limit;
uint256 cursor = (_page - 1) * _limit;
uint256 _uintLength = _tokenIDs.length;
if (cursor >= _uintLength) {

return new uint256[](0);
}
if (tempLength > _uintLength - cursor) {

tempLength = _uintLength - cursor;
}
uint256[] memory uintList = new uint256[](tempLength);
for (uint256 i = 0; i < tempLength; i++) {

uintList[i] = _tokenIDs[cursor + i];
}
return uintList;

}

function pendingReward(uint256 _tokenID) public view override returns (uint256) {
(uint256 amount, , , uint256 rewardClaimed, , address poolAddress, bool

activated) = POSABondInfo.bondInfo(
_tokenID

);
require(poolAddress == address(this), "not bond of this pool");
if (activated) {

return _pendingReward(amount, rewardClaimed);
} else {

return 0;
}

}

function _pendingReward(uint256 _amount, uint256 _rewardClaimed) internal view
returns (uint256) {

return
POSARewardCalculator.calculateReward(

address(this).balance,
_amount,
_rewardClaimed,
totalDeposited,
totalClaimed

Bitkub Chain (BKC) - Technical Paper
Copyright © 2022 Bitkub Blockchain Technology Co., Ltd All Rights Reserved

74

);
}

function cumulativeReward() external view override returns (uint256) {
return address(this).balance + totalClaimed;

}

///

//////////////////////// setter /////////////////////////

function setAdminProjectRouter(address _adminProjectRouter) public override
onlyCommittee {

require(_adminProjectRouter != address(0), "Authorization: new admin project
router is the zero address");

emit AdminProjectRouterSet(address(adminProjectRouter), _adminProjectRouter,
msg.sender);

adminProjectRouter = IAdminProjectRouter(_adminProjectRouter);
}

function setAdminKAP20Router(address _adminKAP20Router) external override
onlyCommittee {

emit AdminKAP20RouterSet(address(adminKAP20Router), _adminKAP20Router,
msg.sender);

adminKAP20Router = IAdminKAP20Router(_adminKAP20Router);
}

function setPOSABond(address _POSABond) external onlyCommittee {
emit POSABondSet(address(POSABond), _POSABond, msg.sender);
POSABond = IPOSABond(_POSABond);

}

function setPOSABondInfo(address _POSABondInfo) external onlyCommittee {
emit POSABondInfoSet(address(POSABondInfo), _POSABondInfo, msg.sender);
POSABondInfo = IPOSABondInfo(_POSABondInfo);

}

function setPOSARewardCalculator(address _POSARewardCalculator) external
onlyCommittee {

emit POSARewardCalculatorSet(address(POSARewardCalculator),
_POSARewardCalculator, msg.sender);

POSARewardCalculator = IPOSARewardCalculator(_POSARewardCalculator);
}

function setKYC(address _kyc) external override onlyCommittee {
emit KYCSet(address(kyc), _kyc, msg.sender);
kyc = IKYCBitkubChain(_kyc);

Bitkub Chain (BKC) - Technical Paper
Copyright © 2022 Bitkub Blockchain Technology Co., Ltd All Rights Reserved

75

}

function setAcceptedKYCLevel(uint256 _acceptedKYCLevel) external override
onlyCommittee {

emit AcceptedKYCLevelSet(acceptedKYCLevel, _acceptedKYCLevel, msg.sender);
acceptedKYCLevel = _acceptedKYCLevel;

}

///

function setHardcap(uint256 _hardcap) external override onlyCommittee {
require(_hardcap > 0, "require hardcap > 0");
require(_hardcap >= totalDeposited, "require hardcap>=totalDeposited");
hardcap = _hardcap;

}

function setMaximumDepositPerUser(uint256 _maximumDepositPerUser) external override
onlyCommittee {

require(_maximumDepositPerUser > 0, "require maximumDepositPerUser>0");
maximumDepositPerUser = _maximumDepositPerUser;

}

function setEndDepositDate(uint256 _endDepositDate) external override onlyCommittee
{

require(block.timestamp < endDepositDate, "require now < endDepositDate");
require(_endDepositDate > 0, "require endDepositDate > 0");
require(_endDepositDate < withdrawDate, "require endDeposit < withdraw");
endDepositDate = _endDepositDate;

}

function setWithdrawDate(uint256 _withdrawDate) external override onlyCommittee {
require(block.timestamp < withdrawDate, "require now < withdrawDate");
require(_withdrawDate > endDepositDate, "require withdraw > endDeposit");
withdrawDate = _withdrawDate;

}

///

function setEnabled(bool[2] memory _enabled) external override onlyCommittee {
metaMaskEnabled = _enabled[0];
bitkubNextEnabled = _enabled[1];

}

function addWhitelistLimit(address _addr) external override onlySuperAdmin {
require(_whitelistLimit.add(_addr), "can't add this address");

}

Bitkub Chain (BKC) - Technical Paper
Copyright © 2022 Bitkub Blockchain Technology Co., Ltd All Rights Reserved

76

function removeWhitelistLimit(address _addr) external override onlySuperAdmin {
require(_whitelistLimit.remove(_addr), "can't remove this address");

}

///

function pause(Flag memory _paused) external override onlyCommittee {
paused = _paused;

}

function emergencyWithdrawKUB(address _to, uint256 _amount)
external
override
onlyCommittee
whenNotPausedEmergencyWithdraw

{
(bool success,) = _to.call{ value: _amount }("");
require(success, "unable to send value");

}

//

/////////////////////// deposit //////////////////////////

function deposit()
external
payable
override
nonReentrant
checkMetaMask(msg.sender)
checkDepositRequirement(msg.value, msg.sender)

{
KKUB.deposit{ value: msg.value }();
_deposit(msg.sender, msg.value);

}

function deposit(uint256 _amount)
external
override
nonReentrant
checkMetaMask(msg.sender)
checkDepositRequirement(_amount, msg.sender)

{
bool success = KKUB.transferFrom(msg.sender, address(this), _amount);
require(success, "failed to transfer KKUB");
_deposit(msg.sender, _amount);

}

Bitkub Chain (BKC) - Technical Paper
Copyright © 2022 Bitkub Blockchain Technology Co., Ltd All Rights Reserved

77

function deposit(uint256 _amount, address _bitkubNext)
external
override
nonReentrant
onlySuperAdmin
checkBitkubNext(_bitkubNext)
checkDepositRequirement(_amount, _bitkubNext)

{
if (!_whitelistLimit.contains(_bitkubNext)) {

require(depositBalance[_bitkubNext] + _amount <= maximumDepositPerUser, "amount
exceeds maximum deposit");

}
adminKAP20Router.externalTransferKKUB(address(0), _bitkubNext, address(this),

_amount, 0);
_deposit(_bitkubNext, _amount);

}

function _deposit(address _sender, uint256 _amount) internal whenNotPausedDeposit {
uint256 tokenID = POSABond.mint(_sender, _amount);
_tokenIDs.push(tokenID);
depositBalance[_sender] += _amount;
totalDeposited += _amount;
emit Deposit(_sender, tokenID, _amount);

}

//

//////////////////////// claim ///////////////////////////

function claim(uint256 _tokenID) external override nonReentrant
checkMetaMask(msg.sender) {

(uint256 amount, uint256 rewardClaimed) = _loadBondInfo(_tokenID);

_claim(msg.sender, _tokenID, amount, rewardClaimed);
}

function claim(uint256 _tokenID, address _bitkubNext)
external
override
nonReentrant
onlySuperAdmin
checkBitkubNext(_bitkubNext)

{
(uint256 amount, uint256 rewardClaimed) = _loadBondInfo(_tokenID);

_claim(_bitkubNext, _tokenID, amount, rewardClaimed);

Bitkub Chain (BKC) - Technical Paper
Copyright © 2022 Bitkub Blockchain Technology Co., Ltd All Rights Reserved

78

}

function _claim(
address _sender,
uint256 _tokenID,
uint256 _amount,
uint256 _rewardClaimed

) internal whenNotPausedClaim {
require(block.timestamp >= endDepositDate, "require now >= endDepositDate");
require(_sender == POSABond.ownerOf(_tokenID), "not owner");

uint256 reward = _pendingReward(_amount, _rewardClaimed);
POSABondInfo.updateClaimReward(_tokenID, reward);

if (reward > 0) {
totalClaimed += reward;
_wrapRewardAndSendKKUB(_sender, reward);

}
emit ClaimReward(_sender, _tokenID, reward);

}

//

/////////////////////// withdraw /////////////////////////

function withdraw(uint256 _tokenID) external override nonReentrant
checkMetaMask(msg.sender) {

_withdraw(_tokenID, msg.sender);
}

function withdraw(uint256 _tokenID, address _bitkubNext)
external
override
nonReentrant
onlySuperAdmin
checkBitkubNext(_bitkubNext)

{
_withdraw(_tokenID, _bitkubNext);

}

function _withdraw(uint256 _tokenID, address _sender) internal
whenNotPausedWithdraw {

require(block.timestamp >= withdrawDate, "require now >= withdrawDate");

(uint256 amount, uint256 rewardClaimed) = _loadBondInfo(_tokenID);

_claim(_sender, _tokenID, amount, rewardClaimed);

Bitkub Chain (BKC) - Technical Paper
Copyright © 2022 Bitkub Blockchain Technology Co., Ltd All Rights Reserved

79

POSABondInfo.updateWithdraw(_tokenID);
_sendKKUB(_sender, amount);
emit Withdraw(_sender, _tokenID, amount);

}

function emergencyWithdraw(uint256 _tokenID) external override nonReentrant
checkMetaMask(msg.sender) {

_emergencyWithdraw(_tokenID, msg.sender);
}

function emergencyWithdraw(uint256 _tokenID, address _bitkubNext)
external
override
nonReentrant
onlySuperAdmin
checkBitkubNext(_bitkubNext)

{
_emergencyWithdraw(_tokenID, _bitkubNext);

}

function _emergencyWithdraw(uint256 _tokenID, address _sender) internal
whenNotPausedEmergencyWithdraw {

require(_sender == POSABond.ownerOf(_tokenID), "not owner");

(uint256 amount,) = _loadBondInfo(_tokenID);

POSABondInfo.updateWithdraw(_tokenID);
_sendKKUB(_sender, amount);
emit EmergencyWithdraw(_sender, _tokenID, amount);

}

//

function _loadBondInfo(uint256 _tokenID) internal view returns (uint256, uint256) {
(uint256 amount, , , uint256 rewardClaimed, , address poolAddress,) =

POSABondInfo.bondInfo(_tokenID);
require(poolAddress == address(this), "not bond of this pool");
return (amount, rewardClaimed);

}

function _wrapRewardAndSendKKUB(address _addr, uint256 _amount) internal {
KKUB.deposit{ value: _amount }();
_sendKKUB(_addr, _amount);

}

function _sendKKUB(address _addr, uint256 _amount) internal {

Bitkub Chain (BKC) - Technical Paper
Copyright © 2022 Bitkub Blockchain Technology Co., Ltd All Rights Reserved

80

bool success = KKUB.transfer(_addr, _amount);
require(success, "failed to transfer KKUB");

}
}

2. PoSABond

contract POSABond is KAP721 {
using EnumerableSetUint for EnumerableSetUint.UintSet;

event POSAPoolVerifierSet(
address indexed oldPOSAPoolVerifier,
address indexed newPOSAPoolVerifier,
address indexed caller

);
event POSABondInfoSet(address indexed oldPOSABondInfo, address indexed

newPOSABondInfo, address indexed caller);
event TransferProposalSet(

address indexed oldTransferProposal,
address indexed newTransferProposal,
address indexed caller

);
event TokenURISet(uint256 indexed tokenId, string tokenURI, address indexed

caller);
event BaseURISet(string oldBaseURI, string newBaseURI, address indexed caller);

modifier onlySuperAdminOrHolder(uint256 _tokenId) {
require(

adminProjectRouter.isSuperAdmin(msg.sender, PROJECT) || msg.sender ==
ownerOf(_tokenId),

"BitkubKAP721: restricted only super admin or holder"
);
_;

}

modifier onlyPOSAPool() {
require(POSAPoolVerifier.isPool(msg.sender), "POSABond: sender is not a pool");
_;

}

mapping(address => mapping(address => EnumerableSetUint.UintSet)) private
_holderTokensByPool;

Bitkub Chain (BKC) - Technical Paper
Copyright © 2022 Bitkub Blockchain Technology Co., Ltd All Rights Reserved

81

IPOSAPoolVerifier public POSAPoolVerifier;
IPOSABondInfo public POSABondInfo;
ITransferProposal public transferProposal;

uint256 public tokenIdCounter = 1;

struct ConstructorInput {
address POSAPoolVerifier;
address POSABondInfo;
address transferProposal;

}

constructor(
string memory _name,
string memory _symbol,
string memory _baseURI,
address _kyc,
address _adminProjectRouter,
address _committee,

address _transferRouter,
uint256 _acceptedKYCLevel,
ConstructorInput memory _constructorInput

) KAP721(_name, _symbol, _baseURI, _kyc, _adminProjectRouter, _committee,
_transferRouter, _acceptedKYCLevel) {

POSAPoolVerifier = IPOSAPoolVerifier(_constructorInput.POSAPoolVerifier);
POSABondInfo = IPOSABondInfo(_constructorInput.POSABondInfo);

transferProposal = ITransferProposal(_constructorInput.transferProposal);
}

function exists(uint256 _tokenId) external view returns (bool) {
return _exists(_tokenId);

}

function tokenOfOwnerByPoolByPage(
address _owner,
address _pool,
uint256 _page,
uint256 _limit

) external view returns (uint256[] memory) {
return _holderTokensByPool[_owner][_pool].get(_page, _limit);

}

function tokenOfOwnerByPool(address _owner, address _pool) external view returns
(uint256[] memory) {

return _holderTokensByPool[_owner][_pool].getAll();
}

Bitkub Chain (BKC) - Technical Paper
Copyright © 2022 Bitkub Blockchain Technology Co., Ltd All Rights Reserved

82

function balanceOfByPool(address _owner, address _pool) external view returns
(uint256) {

return _holderTokensByPool[_owner][_pool].length();
}

function getTokenInfoAddress(uint256 _tokenId) external view returns (address) {
return address(POSABondInfo);

}

//
///

function setPOSAPoolVerifier(address _POSAPoolVerifier) external onlyCommittee {
emit POSAPoolVerifierSet(address(POSAPoolVerifier), _POSAPoolVerifier, msg.sender);
POSAPoolVerifier = IPOSAPoolVerifier(_POSAPoolVerifier);

}

function setPOSABondInfo(address _POSABondInfo) external onlyCommittee {
emit POSABondInfoSet(address(POSABondInfo), _POSABondInfo, msg.sender);
POSABondInfo = IPOSABondInfo(_POSABondInfo);

}

function setTransferProposal(address _transferProposal) external onlyCommittee {
emit TransferProposalSet(address(transferProposal), _transferProposal,

msg.sender);
transferProposal = ITransferProposal(_transferProposal);

}

function setTokenURI(uint256 _tokenId, string calldata _tokenURI) external
onlyCommittee {

emit TokenURISet(_tokenId, _tokenURI, msg.sender);
_setTokenURI(_tokenId, _tokenURI);

}

function setBaseURI(string calldata _baseURI) external onlyCommittee {
emit BaseURISet(baseURI, _baseURI, msg.sender);
_setBaseURI(_baseURI);

}

function pause() external onlyCommittee {
_pause();

}

function unpause() external onlyCommittee {
_unpause();

Bitkub Chain (BKC) - Technical Paper
Copyright © 2022 Bitkub Blockchain Technology Co., Ltd All Rights Reserved

83

}

//
///

function mint(address _to, uint256 _amount) external onlyPOSAPool whenNotPaused
returns (uint256 tokenId) {

tokenId = tokenIdCounter;
tokenIdCounter = tokenIdCounter + 1;

POSABondInfo.setBondInfoOnMint(tokenId, _amount, msg.sender);

_mint(_to, tokenId);
}

function burn(uint256 _tokenId) external onlySuperAdminOrHolder(_tokenId)
whenNotPaused {

_burn(_tokenId);
}

// add _holderTokensByPool
function adminTransfer(

address _from,
address _to,
uint256 _tokenId

) public override {
(, , , , , address poolAddress,) = POSABondInfo.bondInfo(_tokenId);
_holderTokensByPool[_from][poolAddress].remove(_tokenId);
_holderTokensByPool[_to][poolAddress].add(_tokenId);

KAP721.adminTransfer(_from, _to, _tokenId);
}

function _beforeTokenTransfer(
address from,
address to,
uint256 tokenId

) internal override {
if (from != address(0) && transferProposal != ITransferProposal(address(0))) {

transferProposal.useTransferProposal(from, to, tokenId);
}

(, , , , , address poolAddress,) = POSABondInfo.bondInfo(tokenId);
_holderTokensByPool[from][poolAddress].remove(tokenId);
_holderTokensByPool[to][poolAddress].add(tokenId);

}

Bitkub Chain (BKC) - Technical Paper
Copyright © 2022 Bitkub Blockchain Technology Co., Ltd All Rights Reserved

84

}

3. POSABondInfo

contract POSABondInfo is IPOSABondInfo, Committee {
modifier onlyExactPoolOfToken(uint256 _tokenID) {

require(msg.sender == bondInfo[_tokenID].bondPool, "The token does not belong to
the calling pool");

_;
}

event POSABondSet(address indexed oldPOSABond, address indexed newPOSABond,
address indexed caller);

event ActivateBond(
address indexed sender,
uint256 indexed tokenID,
bool oldValue,
bool newValue,
bool indexed manual

);
event EditBondInfoOldValue(

address indexed sender,
uint256 indexed tokenID,
uint256 amount,
uint256 depositTime,
uint256 lastRewardTime,
uint256 rewardClaimed,
uint256 principleClaimed,
address bondPool,
bool activated

);
event EditBondInfoNewValue(

address indexed sender,
uint256 indexed tokenID,
uint256 amount,
uint256 depositTime,
uint256 lastRewardTime,
uint256 rewardClaimed,
uint256 principleClaimed,
address bondPool,
bool activated

);
event SetBondInfoOnMint(

address indexed sender,

Bitkub Chain (BKC) - Technical Paper
Copyright © 2022 Bitkub Blockchain Technology Co., Ltd All Rights Reserved

85

uint256 indexed tokenID,
uint256 amount,
uint256 depositTime,
uint256 lastRewardTime,
uint256 rewardClaimed,

uint256 principleClaimed,
address bondPool,
bool activated

);
event UpdateClaimReward(uint256 indexed tokenID, uint256 lastRewardTime, uint256

rewardClaimed);

struct BondInfo {
uint256 amount;
uint256 depositTime;
uint256 lastRewardTime;
uint256 rewardClaimed;
uint256 principleClaimed;
address bondPool;
bool activated;

}

mapping(uint256 => BondInfo) public override bondInfo;

address public POSABond;
uint256[] public tokenIDs;

constructor(address _committee, address _POSABond) {
committee = _committee;
POSABond = _POSABond;

}

function tokenIDsLength() external view returns (uint256) {
return tokenIDs.length;

}

function setPOSABond(address _POSABond) external onlyCommittee {
emit POSABondSet(address(POSABond), _POSABond, msg.sender);
POSABond = _POSABond;

}

function setBondInfoOnMint(
uint256 _tokenID,
uint256 _amount,
address _poolAddress

) external override {

Bitkub Chain (BKC) - Technical Paper
Copyright © 2022 Bitkub Blockchain Technology Co., Ltd All Rights Reserved

86

require(msg.sender == POSABond, "Sender is not POSABond");

bondInfo[_tokenID] = BondInfo({
amount: _amount,
depositTime: block.timestamp,

lastRewardTime: block.timestamp,
rewardClaimed: 0,
principleClaimed: 0,
bondPool: _poolAddress,
activated: true

});
tokenIDs.push(_tokenID);

emit SetBondInfoOnMint(msg.sender, _tokenID, _amount, block.timestamp,
block.timestamp, 0, 0, _poolAddress, true);

}

function updateClaimReward(uint256 _tokenID, uint256 _amountClaimed)
external
override
onlyExactPoolOfToken(_tokenID)

{
require(bondInfo[_tokenID].activated, "Bond is deactivated");

if (_amountClaimed > 0) {
bondInfo[_tokenID].lastRewardTime = block.timestamp;
bondInfo[_tokenID].rewardClaimed += _amountClaimed;
emit UpdateClaimReward(_tokenID, bondInfo[_tokenID].lastRewardTime,

bondInfo[_tokenID].rewardClaimed);
}

}

function updateWithdraw(uint256 _tokenID) external override
onlyExactPoolOfToken(_tokenID) {

bondInfo[_tokenID].principleClaimed = bondInfo[_tokenID].amount;
_activateBond(_tokenID, false, false);

}

function activateBond(uint256 _tokenID, bool _activated) external onlyCommittee {
_activateBond(_tokenID, _activated, true);

}

function _activateBond(
uint256 _tokenID,
bool _activated,
bool _manual

Bitkub Chain (BKC) - Technical Paper
Copyright © 2022 Bitkub Blockchain Technology Co., Ltd All Rights Reserved

87

) internal {
require(bondInfo[_tokenID].activated != _activated, "The current activated state

must be different from input");
bondInfo[_tokenID].activated = _activated;
emit ActivateBond(msg.sender, _tokenID, !_activated, _activated, _manual);

}

// This function can only be called under a notice from the court
function editBondInfo(

uint256 _tokenID,
uint256 _amount,
uint256 _depositTime,
uint256 _lastRewardTime,
uint256 _rewardClaimed,
uint256 _principleClaimed,
address _bondPool,
bool _activated

) external onlyCommittee {
BondInfo storage info = bondInfo[_tokenID];

emit EditBondInfoOldValue(
msg.sender,
_tokenID,
info.amount,
info.depositTime,
info.lastRewardTime,
info.rewardClaimed,
info.principleClaimed,
info.bondPool,
info.activated

);

emit EditBondInfoNewValue(
msg.sender,

_tokenID,
_amount,
_depositTime,
_lastRewardTime,
_rewardClaimed,
_principleClaimed,
_bondPool,
_activated

);

info.amount = _amount;
info.depositTime = _depositTime;

Bitkub Chain (BKC) - Technical Paper
Copyright © 2022 Bitkub Blockchain Technology Co., Ltd All Rights Reserved

88

info.lastRewardTime = _lastRewardTime;
info.rewardClaimed = _rewardClaimed;
info.principleClaimed = _principleClaimed;
info.bondPool = _bondPool;
info.activated = _activated;

}
}

4. POSARewardCalculator

contract POSARewardCalculator is IPOSARewardCalculator {
function calculateReward(

uint256 _poolBalance,
uint256 _depositAmount,
uint256 _rewardClaimed,
uint256 _totalDeposited,
uint256 _totalClaimed

) external pure override returns (uint256) {
require(

_depositAmount <= _totalDeposited && _rewardClaimed <= _totalClaimed,
"POSARewardCalculator: invalid inputs"

);
if (_totalDeposited > 0) {

// totalReward should never decrease
uint256 totalReward = _poolBalance + _totalClaimed;
// totalDeposited must never change after first reward claim
uint256 reward = (_depositAmount * totalReward) / _totalDeposited;
if (reward > _rewardClaimed) {

return reward - _rewardClaimed;
}

}
return 0;

}
}

Bitkub Chain (BKC) - Technical Paper
Copyright © 2022 Bitkub Blockchain Technology Co., Ltd All Rights Reserved

89

Appendix G: Central Limit Theorem

The Central Limit Theorem states that the sampling distribution of the sample means
approaches a normal distribution (i.e., a Bell curve) as the sample size gets larger. In
other words, CLT is a statistical premise that, given a sufficiently large sample size from
a population with a finite level of variance, the mean of all sampled variables from the
same population will be approximately equal to the mean of the whole population.
Furthermore, these samples approximate a normal distribution, with their variances
being approximately equal to the variance of the population as the sample size gets
larger. CLT can be described more precisely using the definition of a limit. The CDF of
the standardized sample mean (X̄ – μ)/σ converges pointwise to the Cumulative
distribution function (CDF) (Φ) of the standard normal distribution. This is shown with
the integral:

CLT equation

Where: Xn is a sequence of sample data
P is a probability function which states the following equation.

Equation of P

Bitkub Chain (BKC) - Technical Paper
Copyright © 2022 Bitkub Blockchain Technology Co., Ltd All Rights Reserved

90

https://www.statisticshowto.com/sampling-distribution/
https://www.statisticshowto.com/probability-and-statistics/statistics-definitions/sample-mean/
https://www.statisticshowto.com/probability-and-statistics/normal-distributions/
https://www.statisticshowto.com/probability-and-statistics/find-sample-size/
https://www.investopedia.com/terms/s/statistics.asp
https://www.investopedia.com/terms/n/normaldistribution.asp
https://www.investopedia.com/terms/v/variance.asp
https://www.calculushowto.com/limit-of-functions/
https://www.calculushowto.com/cumulative-distribution-function-cdf/
https://www.statisticshowto.com/probability-and-statistics/statistics-definitions/sample-mean/
https://www.calculushowto.com/sequence-and-series/series-convergence-tests/#pointwise
https://www.calculushowto.com/integrals/

Appendix H: Wrap KUB contract (KKUB)

pragma solidity 0.6.6;

interface IAdminAsset {
function isSuperAdmin(address _addr, string calldata _token) external view returns (bool);

}

interface IKYC {
function kycsLevel(address _addr) external view returns (uint256);

}

interface IKAP20 {
event Transfer(address indexed from, address indexed to, uint256 tokens);
event Approval(address indexed tokenOwner, address indexed spender, uint256 tokens);

function totalSupply() external view returns (uint256);

function balanceOf(address tokenOwner) external view returns (uint256 balance);

function allowance(address tokenOwner, address spender) external view returns (uint256 remaining);

function transfer(address to, uint256 tokens) external returns (bool success);

function approve(address spender, uint256 tokens) external returns (bool success);

function transferFrom(address from, address to, uint256 tokens) external returns (bool success);

function getOwner() external view returns (address);

function batchTransfer(address[] calldata _from, address[] calldata _to, uint256[] calldata _value) external
returns (bool success);

function adminTransfer(address _from, address _to, uint256 _value) external returns (bool success);
}

contract KKUB is IKAP20 {
string public name = "Wrapped KUB";
string public symbol = "KKUB";
uint8 public decimals = 18;

event Transfer(address indexed from, address indexed to, uint256 value);
event Approval(address indexed tokenOwner, address indexed spender, uint256 value);
event Deposit(address indexed dst, uint256 value);
event Withdrawal(address indexed src, uint256 value);
event Paused(address account);
event Unpaused(address account);

mapping (address => uint256) balances;

Bitkub Chain (BKC) - Technical Paper
Copyright © 2022 Bitkub Blockchain Technology Co., Ltd All Rights Reserved

91

mapping (address => mapping (address => uint256)) allowed;
mapping (address => bool) public blacklist;

IAdminAsset public admin;
IKYC public kyc;
bool public paused;

uint256 public kycsLevel;

modifier onlySuperAdmin() {
require(admin.isSuperAdmin(msg.sender, symbol), "Restricted only super admin");
_;

}

modifier whenNotPaused() {
require(!paused, "Pausable: paused");
_;

}

modifier whenPaused() {
require(paused, "Pausable: not paused");
_;

}

constructor(address _admin, address _kyc) public {
admin = IAdminAsset(_admin);
kyc = IKYC(_kyc);
kycsLevel = 1;

}

function setKYC(address _kyc) external onlySuperAdmin {
kyc = IKYC(_kyc);

}

function setKYCsLevel(uint256 _kycsLevel) external onlySuperAdmin {
require(_kycsLevel > 0);
kycsLevel = _kycsLevel;

}

function getOwner() external view override returns (address) {
return address(admin);

}

fallback() external payable {
deposit();

}

receive() external payable {
deposit();

}

Bitkub Chain (BKC) - Technical Paper
Copyright © 2022 Bitkub Blockchain Technology Co., Ltd All Rights Reserved

92

function deposit() public whenNotPaused payable {
balances[msg.sender] += msg.value;
emit Deposit(msg.sender, msg.value);
emit Transfer(address(0), msg.sender, msg.value);

}

function withdraw(uint256 _value) public whenNotPaused {
require(!blacklist[msg.sender], "Address is in the blacklist");
_withdraw(_value, msg.sender);

}

function withdrawAdmin(uint256 _value, address _addr) public onlySuperAdmin {
_withdraw(_value, _addr);

}

function _withdraw(uint256 _value, address _addr) internal {
require(balances[_addr] >= _value);
require(kyc.kycsLevel(_addr) > kycsLevel, "only kyc address registered with phone number can withdraw");

balances[_addr] -= _value;
payable(_addr).transfer(_value);
emit Withdrawal(_addr, _value);
emit Transfer(_addr, address(0), _value);

}

function totalSupply() public view override returns (uint256) {
return address(this).balance;

}

function balanceOf(address _addr) public view override returns (uint256) {
return balances[_addr];

}

function allowance(address _owner, address _spender) public view override returns (uint256) {
return allowed[_owner][_spender];

}

function approve(address _spender, uint256 _value) public override whenNotPaused returns (bool) {
require(!blacklist[msg.sender], "Address is in the blacklist");
_approve(msg.sender, _spender, _value);
return true;

}

function _approve(address owner, address spender, uint256 amount) internal {
require(owner != address(0), "KAP20: approve from the zero address");
require(spender != address(0), "KAP20: approve to the zero address");

allowed[owner][spender] = amount;
emit Approval(owner, spender, amount);

Bitkub Chain (BKC) - Technical Paper
Copyright © 2022 Bitkub Blockchain Technology Co., Ltd All Rights Reserved

93

}

function transfer(address _to, uint256 _value) public override whenNotPaused returns (bool) {
require(_value <= balances[msg.sender], "Insufficient Balance");
require(blacklist[msg.sender] == false && blacklist[_to] == false, "Address is in the blacklist");

balances[msg.sender] -= _value;
balances[_to] += _value;
emit Transfer(msg.sender, _to, _value);

return true;
}

function transferFrom(
address _from,
address _to,
uint256 _value

) public override whenNotPaused returns (bool) {
require(_value <= balances[_from]);
require(_value <= allowed[_from][msg.sender]);
require(blacklist[_from] == false && blacklist[_to] == false, "Address is in the blacklist");

balances[_from] -= _value;
balances[_to] += _value;
allowed[_from][msg.sender] -= _value;
emit Transfer(_from, _to, _value);
return true;

}

function batchTransfer(
address[] calldata _from,
address[] calldata _to,
uint256[] calldata _value

) external override onlySuperAdmin returns (bool) {
require(_from.length == _to.length && _to.length == _value.length, "Need all input in same length");

for (uint256 i = 0; i < _from.length; i++) {
if(blacklist[_from[i]] == true || blacklist[_to[i]] == true){

continue;
}

if (balances[_from[i]] >= _value[i]) {
balances[_from[i]] -= _value[i];
balances[_to[i]] += _value[i];
emit Transfer(_from[i], _to[i], _value[i]);

}
}

return true;
}

Bitkub Chain (BKC) - Technical Paper
Copyright © 2022 Bitkub Blockchain Technology Co., Ltd All Rights Reserved

94

function adminTransfer(
address _from,
address _to,
uint256 _value

) external override onlySuperAdmin returns (bool) {
require(balances[_from] >= _value);
balances[_from] -= _value;
balances[_to] += _value;
emit Transfer(_from, _to, _value);

return true;
}

function pause() external onlySuperAdmin whenNotPaused {
paused = true;
emit Paused(msg.sender);

}

function unpause() external onlySuperAdmin whenPaused {
paused = false;
emit Unpaused(msg.sender);

}

function addBlacklist(address _addr) external onlySuperAdmin {
blacklist[_addr] = true;

}

function revokeBlacklist(address _addr) external onlySuperAdmin {
blacklist[_addr] = false;

}
}

Bitkub Chain (BKC) - Technical Paper
Copyright © 2022 Bitkub Blockchain Technology Co., Ltd All Rights Reserved

95

Appendix I: Register smart contract

// Sources flattened with hardhat v2.4.0 https://hardhat.org

// File contracts/interfaces/IAdmin.sol

pragma solidity 0.6.6;

interface IAdmin {
function isSuperAdmin(address _addr) external view returns (bool);

function isAdmin(address _addr) external view returns (bool);
}

// File contracts/KYCBitkubChainV2.sol

pragma solidity 0.6.6;

contract KYCBitkubChainV2 {
IAdmin public admin;

mapping(address => uint256) public kycsLevel;
mapping(address => bool) public isAddressKyc;
address[] public kycAddresses;

// projectName => functionName => KYC Levels
mapping(string => mapping(string => uint256)) public kycsProjectLevel;

mapping(string => uint256) public kycTitleToLevel;
mapping(uint256 => string) public kycLevelToTitle;

uint256 public version = 2;

event KycCompleted(address indexed addr, address indexed caller, uint256 previousLevel, uint256 level);
event KycRevoked(address indexed addr, address indexed caller, uint256 previousLevel, uint256 level);

event KycProject(address indexed _caller, string projectName, string functionName, uint256 level);
event KycTitle(address indexed _caller, string title, uint256 level);

modifier onlySuperAdmin() {
require(admin.isSuperAdmin(msg.sender), "Restrict only super admin");
_;

}

modifier onlyAdmin() {
require(

admin.isSuperAdmin(msg.sender) || admin.isAdmin(msg.sender),
"Restrict only address is admin smart contract"

);
_;

}

constructor(address _admin) public {
admin = IAdmin(_admin);

}

Bitkub Chain (BKC) - Technical Paper
Copyright © 2022 Bitkub Blockchain Technology Co., Ltd All Rights Reserved

96

function kycAddressesLength() external view returns (uint256) {
return kycAddresses.length;

}

function setAdmin(address _admin) external onlySuperAdmin {
admin = IAdmin(_admin);

}

function _isPowerOfTwo(uint256 n) private pure returns (bool) {
return n > 0 ? (n & (n - 1)) == 0 : false;

}

function setKycTitle(string calldata _title, uint256 _level) external onlySuperAdmin {
require(_isPowerOfTwo(_level), "Level must be power of 2");

kycTitleToLevel[_title] = _level;
kycLevelToTitle[_level] = _title;

emit KycTitle(msg.sender, _title, _level);
}

function setKycProjectLevel(
string calldata _projectName,
string calldata _functionName,
uint256 kycsLevel_

) external onlySuperAdmin {
kycsProjectLevel[_projectName][_functionName] = kycsLevel_;
emit KycProject(msg.sender, _projectName, _functionName, kycsLevel_);

}

function setKycCompleted(address _addr, uint256 _level) public onlyAdmin {
_setKycCompleted(_addr, _level);

}

function batchSetKycCompleted(address[] calldata _addrs, uint256 level) external onlyAdmin {
for (uint256 i = 0; i < _addrs.length; i++) {

_setKycCompleted(_addrs[i], level);
}

}

function _setKycCompleted(address _addr, uint256 _level) internal {
if (_level > 1) {

uint256 previousLevel = kycsLevel[_addr];
kycsLevel[_addr] = _level;

if (!isAddressKyc[_addr]) {
kycAddresses.push(_addr);
isAddressKyc[_addr] = true;

}

emit KycCompleted(_addr, msg.sender, previousLevel, _level);
}

}

// No kyc level set to no kyc
function setKycRevoked(address _addr) external onlyAdmin {

_setKycRevoked(_addr);
}

Bitkub Chain (BKC) - Technical Paper
Copyright © 2022 Bitkub Blockchain Technology Co., Ltd All Rights Reserved

97

function batchSetKycRevoked(address[] calldata _addrs) external onlyAdmin {
for (uint256 i = 0; i < _addrs.length; i++) {

_setKycRevoked(_addrs[i]);
}

}

function _setKycRevoked(address _addr) internal {
uint256 previousLevel = kycsLevel[_addr];
kycsLevel[_addr] = 0;
emit KycRevoked(_addr, msg.sender, previousLevel, 0);

}
}

Bitkub Chain (BKC) - Technical Paper
Copyright © 2022 Bitkub Blockchain Technology Co., Ltd All Rights Reserved

98

Appendix J: HyperBlock Smart contract & Gas tank flow

1. KAP-20 technical flow

2. KAP-721 technical flow

Bitkub Chain (BKC) - Technical Paper
Copyright © 2022 Bitkub Blockchain Technology Co., Ltd All Rights Reserved

99

3. Swap KAP-20 technical flow

Bitkub Chain (BKC) - Technical Paper
Copyright © 2022 Bitkub Blockchain Technology Co., Ltd All Rights Reserved

100

